9. On Inner Automorphisms of Certain Finite Factors

By Masahiro NAKAMURA*) and Zirô TAKEDA**)
(Comm. by K. Kunugi, M.J.A., Jan. 12, 1961)

1. Employing the terminology of J. Dixmier [1], let us consider an abelian von Neumann algebra A with a faithful normal trace. If G is an ergodic group of automorphisms of A preserving the trace, then the crossed product $G \otimes A$ in the sense of T. Turumaru [5] coincides with the classical examples of finite factors due to F. J. Murray and J. von Neumann.

For an inner automorphism of $G \otimes A$ preserving the subalgebra A, I. M. Singer [4] proved that the inducing unitary operator $\Sigma_g g \otimes e_g$ satisfies certain properties; roughly speaking, up to a multiplication function, the character space of A splits into mutually disjoint clopen sets with the characteristic function e_g , on each of which the action of the automorphism coincides with the action of g.

2. Now, if A is a finite factor and G is an enumerable group of outer automorphisms¹⁾ of A, then $G \otimes A$ is a finite factor.²⁾ The purpose of the present note is to show a factor analogue of Singer's theorem in the following

THEOREM. If a unitary operator $\Sigma_{\mathfrak{g}} \otimes a_{\mathfrak{g}}$ induces an inner automorphism α of $G \otimes A$ which preserves the factor A, then all g-coefficients $a_{\mathfrak{g}}$ vanish up to a certain $g_{\mathfrak{g}}$.

Proof. If the unitary operator induces the action $x \to x^{\alpha}$, then (1) $(\Sigma_{q} g \otimes a_{q})x = x^{\alpha}(\Sigma_{q} g \otimes a_{q})$

for all $x \in A$. (1) implies at once,

$$a_{\sigma}x = x^{\sigma\sigma}a_{\sigma},$$

for all $x \in A$. In (2), if αg is known being outer as an action on A, then [2, Lemma 1] implies at once $a_g = 0$. Hence, to prove the theorem, it is sufficient to show that g is outer on A for all $g \in G$ up to a certain g_0 .

If not, then there is an another $g_1 \in G$ for which αg_1 is inner too, or $\alpha g_1 \equiv 1$ modulo the group I of all inner automorphisms of A. Hence, our hypothesis implies $\alpha g_0 \equiv \alpha g_1 \mod I$, whence $g_0 \equiv g_1 \mod I$. This is clearly impossible by the definition of the group G of outer automorphisms unless $g_0 = g_1$. This proves the theorem.

- 3. By the above proof, the theorem can be restated as follows:
- *) Osaka Gakugei Daigaku.
- **) Ibaraki University.
- 1) A group G is called a group of outer automorphisms if each $g \in G$ is an outer automorphism unless g=1.
 - 2) A proof of the statement is contained in [2, Theorem 1].

COROLLARY. An A-preserving inner automorphisms of the crossed product $G \otimes A$ of a finite factor A by an enumerable group G of outer automorphisms coincides with a member of the group G up to an inner automorphism of A.

It is to be noticed that the proof of the theorem implies also that an automorphism α of $G \otimes A$ preserving A is outer on $G \otimes A$ if αg is outer on A for all $g \in G$. This remark gives an another proof of $[3, \S 6$, Corollary].

References

- [1] J. Dixmier: Les Algèbres d'Opérateurs dans l'Espace Hilbertien, Paris (1957).
- [2] M. Nakamura and Z. Takeda: On some elementary properties of the crossed products of von Neumann algebras, Proc. Japan Acad., 34, 489-494 (1958).
- [3] M. Nakamura and Z. Takeda: On the extensions of finite factors. I, Proc. Japan Acad., 35, 149-154 (1959).
- [4] I. M. Singer: Automorphisms of finite factors, Amer. Jour. Math., 17, 117-133 (1955).
- [5] T. Turumaru: On the crossed product of operator algebras, Tôhoku Math. Jour., 10, 355-364 (1958).