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(Comm. by K. KuNuGl, M.J.A., Feb. 13, 1961)

We shall continue the study of the properties of the classes &’
in section 3 and prove the main theorem 6 in section 4.

3. THEOREM 3. Let (G,), be a subdomain of G, and a<<a,<b,<b
and let Te®D'(G,,,) (+o0=8>—c). Then the restriction (T), of
T on (Go)i(=(G.)oX (au, br)) belongs to GD'[(G,..)].

ProoF. The proof follows immediately from the definitions of
the classes G}, so we omit the proof of Theorem 3.

THEOREM 4. Let (G.,), be a domain in R™ such that (G,), =G,
and (G,), 18 compact. Also let —oo<a<a,<by<b<+oo. If Ted
(G,..), then there is am integer s such that the restriction (T)o of
T on (Gri)(=(G.)o X (ag, by)) belongs to ED'[(G,.1).].

ProOF. By the local structure theorem of distributions,” we can
find a complex-valued function F,eC°[(G,,.),] such that (T),=D?D:F,
s’ an integer=0. By Lemma 2, F, regarded as a distribution belongs
to GXD'[(G,,1)o]. Hence by (2.6) in Theorem 2 and by Theorem 1, we
have (T)eGV[(G,iie] — s=—¢. QE.D.

THEOREM 5. Let Te¥'(G,,,). Assume that each point (%o, t,) of

G,.. has a mneighbourhood (G,.)), of the form (G,),X(ayb,) where
— 0 <Za=ay<h=b=+0o and (G,), 18 ¢ subdomain of G, such that
the restriction (T), of T on (G,,y), belongs to GD'[(G,.,),] where s
(— o0 <8<+ ) 1is the same for all points (&, t)€G,,,. Then TeE:D’
G..).
( lI)’ROOF. For + c0>s8>0, the proof of Theorem 5 is immediate
if a suitable partition of the unity® on G,,,, the univalency of the
mapping M~! and the compactness of the carriers of the test functions
¢ for the distribution T are used. Hence we omit the proof for the
case.

For —oo<s8<0, we proceed as follows. For Te¥'(G,,,), there
exists always a distribution T,e¢®'(G,,,) such that T=D;*T,» Then

1) Cf. L. Schwartz [2], p. 83.

2) Cf. L. Schwartz [2], p. 23.
8) Cf. L. Schwartz [2], p. 656. The same remark as in 7) applies here also.
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the restriction (7)), of T; on (G,..), belongs to &D'[(G,.,),] by the
premiss of Theorem 5 and by Theorem 1. Hence T,¢G'¥'(G,,,) since
for s=0 Theorem 5 is already proved. Therefore by Theorem 1, we
get T=D;*T,eCD'(G,.,,). Q.E.D.

4. Let a,,. (%, t)eC=(G,,,), B,=M[(B,),]cCD'(G,,,) and U=
[(U).]e&Y'(G,,,) for i,j=1,---, m and |a|<I* where | is anon-
negative integer. Then by Lemmas 3, 4 and 6,

(4.1) D, l7¢=Emsz P ai,J,u(’?’ tiD; ﬁi:‘ﬁi

on G,,,, if and only if
d(Ut)t/dt=2|a|sx Z;;l a'l,j,a(x’ t)D( Uj)t+(Bi)t
1:: 1, ey, n
on (a, b).

Also let a,.(x,t)eC=(G,,), B,cV'(G,,,) and T,e&D'(G,,,) for
%,7=1,---, n and |a|<!* where s is an integer or -+ co(—oco <8<+ )
and [ is a non-negative integer. Then if (4.1) is satisfied on G,.,,
then B,e6:'d(G,,,) i=1,---,n by Theorems 1, 2 and Lemma 9.

We prove a converse of the later statement in Theorem 6. The
answer for the problem stated in the introduction is given by the
case s=1 of Theorem 6.

THEOREM 6. Let a,,.(x,t)eC=(G,,,), B,cC:'D(G,,,) and Ued
(G,.) for i,5=1,---,m and |a|<l¥ where s is an integer or + oo
(—o<8<+x), |l is a non-negative integer and G,,, 18 a domain
in (x, t)-space of the form G,X (a,b). If U, satisfy on G,., the system
of partial differential equations of evolution
1) DU, =S st 351 @y, 5.@ )D:U,+ B,

1::1,. e, m,
then U,e6:0'(G,,,) i=1,---,n.

PROOF. Let (x,,t,) be any point of G,,,, We take a neighbour-
hood (G,,,), of the form (G,), X (ay, b,) of (x,, t;) where — oo <a<a,<b,
<b<+ o, (G,), &G, and (G,), is compact. We denote the restric-
tions of U, and of B, on (G,..), by (T), and (B)), respectively. By
Theorem 5, for the proof of Theorem 6 it is sufficient to prove that
(ﬁ,)oe@:SD’[(G,,”)o] for every point (x,, to)€G,,,.

Assume the contrary, that is, assume that at least one of (I':f,.)o
does not belong to G;D'[(G,.,),] for a point (x,%,)€G,,;. Then by
Theorem 4, there is the greatest s, of integers s such that all ( I'j,v)0
belong to CY9'[(G,.1)o], and s>s,. Therefore on (G,,,), the right

4) e (k=1,---, n) non-negative integers a=(ay,- -, ay)
le|=2k e Dz=Dg:---Dgn.
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sides of (4.1) belong to G2D'[(G,.,)e], since (B,)oeC: 1D [(G,.)e] S E2D
[(G..)e] by Theorem 3 and Lemma 9 and also other terms in the
right sides of (4.1) belong to €¢D'[(G,.1)e] on (G,.1) by Theorem 2.

Hence the left sides of (4.1) on (G,. e D.( ﬁ‘)oe@,‘éb’[(GM,)., i=1,---,m

so that by Theorem 1, (T,),eC2*D'[(G,.,)o] i=1,---,n. But this
contradicts the definition of s,. Q.E.D.
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