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(Comm. by K. KUNUGI, M.J.A., March 13, 1961)

K. Morita [4, Theorem 10.3 proved that (a) every metric space
with the star-finite property can be embedded into the product of a
0-dimensional metric space and the Hilbert fundamental cube." Yu.
M. Smirnov [5 proved the following theorem which is an immediate
corollary of Morita’s theorem cited now and seems to be probably
obtained independently of Morita’s work: () For every metric space
R with the star-finite property there exist a 0-dimensional metric
space S and a continuous mapping f of R onto S such that f-(x) is
separable for every point x of S.

The purpose of this note is to give an analogous proposition to
(/) as follows.

Theorem 1. Let R be a non-empty Hausdorff space with the

star-finite property. Then there exist a paracompact Hausdorff space
A with dim A--O and a continuous mapping f of R onto A such
that for every point y of A f-(y) has the Lindel6f property2’

In view of Morita’s theorem [2 we may expect that the con-
dition imposed on f in our Theorem 1 will be strengthened to be
closed: But it is, in general, impossible as Yu. Smirnov’s example
[5] shows. It seems to be difficult to obtain a refinement of Theorem
1 in an analogous expression to the proposition (a), because of the
difficulty to get the space for our case which plays the same rble as
the Hilbert fundamental cube does for the metric spaces with the
star-finite property.

To prove Theorem 1 let us start with finding the universal 0-
dimensional paracompact Hausdorff spaces.

Definition. Let A be a directed set and {A,f..,;/< ,/, e//} be
an inverse limiting system consisting of discrete spaces Aa, where

1) This theorem has been improved by himself as follows: Every metric space
with an open basis which is the sum of a countable number of star-countable open
coverings can be embedded into the product of a 0-dimensional metric space and the
Hilbert fundamental cube. An open covering is called star-countable if every element
of it intersects at most countable elements of it.

2) An open covering of a topological space is called star-finite if every element of
it intersects at most finite elements of it. According to Morita [3] a topological space
is called to have the star-finite property if every open covering of it can be refined
by a star-finite open covering.

3) dim A denotes the covering dimension of A.
4) A topological space is called to have the LindelSf property if every open covering

of it has a countable subcovering. Morita [3] proved that every regular space with the
LindelSf property has the star-finite property.
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f, is a mapping of A into A. Let , be the projection of lim {A,
f,} into A,. We call the system {A,;f,} full if every open covering
of lim {A,f} can be refined by {(a); aeA} for some

Theorem 2. In order that a topological space R be a paracom-
pact Hausdorff space with dim R----0 it is necessary and sucien
that R is homeomorphic o the non-empty limi space obtained from
an inverse limiting full system which consists of discre spaces.

Proof. It is evident that the condition is sufficient. To prove
the necessity let R be a paracompact Hausdorff space with dim R----O.
Let {={U.;aeA}; 2e/} be a system of all open coverings of R
whose orders’ are one. Let us introduce into i the semi-order
if and only if 1I refines lI. Then /becomes a directed set. Consider
A as topological spaces with the discrete topology. Define f: A-
A,(2<:p) in such a way that f(a)’- if and only if U. U. Then
f is a mapping of A onto A and {A,f; 2e//} becomes an inverse
limiting system of discrete spaces. Let be an arbitrary point of
R. For every 2e// we can choose an index eA with e U. Then
(; 2e/) is a point of A----lira {A,f}. Hence A is non-empty. Since
for every xeR (; 2e//) is unique, we can define a mapping f: R->A
in such a way that f()----()eA. We can prove that f gives a home-
omorphism of R onto A as follows.

To show that f is onto let a be an arbitrary point of A. Then
lt--{U,,; 2//} forms a basis of a Cauchy filtre with respect to the
uniformity {lI; //}.’ Since it is almost evident that a paracompact
Hausdorff space is complete with respect to its universal (i.e. finest)
uniformity and {l; 2/1} is actually universal, lI converges to a point
x of R. Since for every e// U, is open and closed, belongs to
U,) for every e/. Hence f()--a and we know that f is onto.

Since {1I; e//} agrees with the topology of R, f is one-to-one.
Let be an arbitrary point of R and f(x)--a. Then {U.,; 2e/} and
{7((a))} form complete neighborhood systems of and a respect-
ively. Moreover it is evident that f(U,,)=(,(a)). Hence we
know that both f and f- are continuous. Therefore f is a home-
omorphic mapping.

The rest of the proof is to show that the system {A,f} is full.
Let be an arbitrary open covering of A. Then there exists
such that 1I, refines {f-’(V); V}. Since f(H,)={f(U); UH} refines

and ][U.)=7’(a) for every aeA, {(a); aeA} refines . Thus
the system {A} is full and the theorem is proved.

5) The order of an open covering u is the supremum of the number of elements
of II with the non-empty intersection.

6) A uniformity in this note means a basis of a uniformity in the sense of J. W.
Tukey [6].
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The following proposition, which is well known, is an immediate
consequence of this theorem.

Corolla 1. For a opological space R the follawing conditions
are equivalent.
(1) R is a compac$ Hausdor2 space wih dim R--0.
(2) R is homeomorphic o a non-empty closed subse$ of $he produc

of discrete spaces consisting of finite points.
( 3 ) R is homeomarphic to the non-empty limit space of an inverse
limiting system of discrete spaces consisting of finite points.

Corollary 2.) For a topological space R the following condi-
tions are equivalent.
(1) indR’=0.
(2) R is homeomorphic to a non-empty dense subset of the limit
space of an inverse limiting system of discrete spaces.
(3) R is homeomorphic to a non-empty dense subset of a compact

Hausdorff space S with dim S--O.
Proof. (3)-(2) is obvious from Corollary 1. (2)->(1) is clear.

Let ind R-O. Then the family {lI; 2e//} of all finite open coverings
of R whose orders are one forms a uniformity of R which agrees
with its topology. Then an analogous argument to the proof of
Theorem 2 yields at once the implication (1)-->(3).

Proof of Theorem 1. Let {I={U,; aeA}; eA} be a system of
all open coverings of R whose orders are one. Starting from {lL}, we
can construct A and f by the quite analogous method in the proof
of Theorem 2. Define the semi-order 2<:p if and only if 1I refines

lI. Then 1 becomes a directed set. Consider A as topological spaces
with the discrete topology. Define f A-->A(2<p) in such a way
that f(a)-- if and only if U. U. Then f is onto and [A,f}
becomes an inverse limiting system of discrete spaces. Let be an
arbitrary point of R. For every 2e// choose an index xA with

xeU. Then evidently (; 2/) is a point of A=lim {A,f}. Hence
A is non-empty. Since for every xeR (x; eA) is unique, we can
define a mapping f: R->A in such a way that

To show the fullness of {A,f} let 1I be an arbitrary open cover-
ing of A. Since ind A--O, 1I can be refined by a covering whose
elements are open and closed. Then f-()--{f-(V); V}-[W;eX}
is a covering of R whose elementsare open and closed. Let )--{D;

7) It is provable that many mathematicians have become aware of the validity of
this corollary. The equivalency of (1) and (3) was proved for the first time by N.
Vedenisoff whose proof is not available in our country.

It is to be noted that a topological space R with ind R=0 is completely regular.
As for an example of a completely regular space R with ind R=0 which fails to be
normal, see [1, Appendix].

8) ind R denotes the small inductive dimension of R. ind R=0 if and only if there
exists a basis of R consisting of open and closed sets.
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]e Y} be a star-finite open covering of R which refines f-’(). Then
Y can be decomposed into mutually disjoint subsets Yr, 7eF, such
that i) Yr consists of countable indices for every re F and ii) D,D,-- whenever zhe Y,, ]2e Yr, and 72. Define a mapping " Y--->X
in such a way that 0(])-- yields DC We. Let Yr--{l(7), 2(r), ...}
and E<)= Wc,cr)),(,{D; 2 Y}), i--l, 2, Then E<) is open
and closed for any i and 7eF. Let E0r)--q for any 7e F. Then it
can easily be seen that ,--{E,cr)--.-<E.r); i--1, 2,---, re.P} is an open

covering of R whose order is one. Thus =It for some eA. Since
@ refines f-()and tI--[f-(rf(a));aeA}, we know that [r(a);
a eArl refines . Thus the fullness of [A, f,] has established. By
Theorem 2 A is therefore a paracompact Hausdorff space with dim A
--0.

The above argument proves essentially the following fact: For
any relatively open covering of f(R) there exists an index eA
such that [f(R),-’,u-f(a); a eA} refines . Thus we know that f(R)
is paracompact and S=[{f(R),-,"f(a); aeA}; ,,leA] forms the univer-

sal structure of f(R). Since i).f(R)--A, ii)f(R) is complete with
respect to its universal structure, iii) S is the restriction of the
universal structure S of A, it is easy to verify that f(R)--A.

Let y be an arbitrary point of A. To show that f-(y) has the
LindelSf property, let ( be an arbitrary relatively open covering of
f-’(y). Since (--[(R--f-(y)),..,G; Ge} is an open covering of R,
there exists a star-finite open covering )-[H; 3ed] of R which re-
fines (. d can be decomposed into mutually disjoint subsets d,,
8cO, such that i) d, consists of countable indices for every 80 and
ii) H,H,-- for any d,,, 2 d, with 02. Since p {{H;
6ezl,}; 8e0} belongs to {lI; eA}, we get Yp--lI for some 2cA. There-
fore there exists an index 80e0 such that {H; eJ,o}--U(). Since
f-(-y((y)))-U.(), {H; eJ,0} covers f-(y). {Hf-(y); JeJ,o] is
evidently a relatively open covering of f-(y) which consists of count-
able elements and refines (. Thus we conclude that f-(y) has the
LindelSf property and the theorem is completely proved.
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