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1. Introduction. In classical differential geometry the treatment
of the curvature of parametric curves is restricted to the case in
which the curves are at least twice continuously differentiable. As
a contrast to this, on the other hand, we have in real function theory
the fundamental theorem of Lebesgue, according to which a function
of a real variable is almost everywhere derivable provided it is of
bounded variation. And yet the two quantities, curvature and deriva-
tive, may be thought to belong by origin to a common mathematical
category, in the sense that they both are outcomes of the same
process of differentiation, applied once or twice according to the cases.
Reflecting upon this fact we are led to surmise that a theory of
curvature might be constructed under more general assumptions on
the curves than usual. It is the object of the present note to show
that such a theory is actually possible. The tools requisite thereto
are already obtained in our recent papers [1] to 4.

2. Bend of parametric curves. In what follows the term interval,
by itself, will always mean a linear interval in its widest sense, i.e.
any connected infinite set of real numbers. As usual the prepositive
epithets closed and open for intervals will only be used in connection
with finite (that is, bounded) intervals, while we shall term endless
any interval which is an open set.

Consider a fixed Euclidean space R of any dimension
The points of R will be regarded as vectors whenever convenient.
We shall denote by poq the angle made by any pair of nonvanishing
vectors p, q of R and contained in the closed interval [0, ]. By a
parametric curve, or simply curve, in R we shall understand an
arbitrary mapping of the real line R into the space R. A curve
will be called to be light, if it is constant on no intervals.

The letter p will stand in the present and the next section for
a given light curve. We call bend of on an interval I and denote
by 9(% I), the quantity defined as follows. Let z/ be any finite, non-
overlapping sequence of closed intervals J,.--, J, (n:>2) situated in
L We require further that none of the increments (J) of p over
them vanish and that these intervals are arranged in z/ in the same
order in which they appear in the real line R (so that J lies in R on
the left of J/x for i--1, 2, .-., n--l). Plainly the former requirement



116 K. ISEK [Vol. 87,

is realizable in virtue of the lightness of . Now 2(, I) means the
supremum, for all such sequences , of the sum of the angles (J)
o(J/) where i ranges over 1, 2,..-, n--1. When the bend 2(% I) thus
defined is finite, the curve is termed straightenable, or of bounded
bend, on L If, further, this is the case for all finite intervals/, we
say that is locally straightenable or of locally bounded bend.

As is well known, we have the triangular inequality xoz+yz
:>xoy for any triple z, y, z of nonvanishing vectors of the space R,
where the sign of equality holds if especially z+y--z. It follows
easily from this and the lightness of that, in the above definition
of bend, we may restrict the sequence J,---, J of intervals to be
such that each neighbouring pair J, J/ taken from them can be
enclosed in some closed interval with length less than 5, where 5 is
a positive number given arbitrarily beforehand.

We developed in our work 1] certain of the fundamental proper-
ties of curve bend; but the present note can be read nearly inde-
pendently of that paper, to which we shall make reference only once
later on (7). We hope to fully utilize the result of [1] in a future
paper of ours which will deal with two properties of the curvature
of continuous parametric curves.

3. Measureobend. Henceforward we shall simply write L(I) for
9(% I), since this causes no ambiguity. We go on now to attach to
the function /2 an outer measure of Carathodory, denoted by 2. and
called measure-bend induced by the curve . Given any nonvoid set
ER we namely define 9.(E) as the infimum of the sum (I)+(L)
+-.-, where (I, L,---) is an arbitrary sequence (finite or infinite,
but of course countable) of endless intervals which together cover
the set E. We define further the value of . for the void set to
be zero. That the set-function Y2. thus constructed is really an outer
Carathodory measure can be verified without difficulty (cf. Saks 6,
p. 43).

We shall prove now the following noteworthy
THEOREM. We have 9.(I)=9(I)for every endless interval I.
PROOF. The relation 9.(I)(I) being obvious by definition of

measure-bend, it is enough to derive the opposite inequality. Clearly
9(I) is the supremum of 2(J) for closed intervals J in L Let us
fix any such interval J. Consider an arbitrary sequence I, I2, of
endless intervals which together cover L By reductio ad absurdum
we easily find the existence of a positive number 5 with the property
that every closed interval, contained in J and having length less than
5, is contained in one at least of I, I2, This being so, consider
in J any non-overlapping sequence J, ..., J (n2) of closed intervals,
arranged in the same order in which they appear in R, such that
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none of (J1), ", (Jn) vanish and, moreover, each neighbouring pair
J, J+ can be enclosed in some closed interval with length <. It
follows immediately that the sum of the angles o(J)o(J+) for i--
l, 2, ..., n-- 1 cannot exceed the sum Y2(I1)(I2)-"" Taking the
supremum of the former sum we obtain 9(J)9(I)-2(I2)-{-..., and
this leads at once to 2(J)2.(I), the sequence I, I2, being arbi-
trary. The interal J has been kept fixed hitherto. We now make
it vary arbitrarily and conclude that (I)2.(I), which completes
the proof.

REMARK. For another treatment of the matter of this section
from a more general standpoint we refer the reader to our forth-
coming paper [5.

4. MeasureAength. Given a curve @ in R we define as usual
the length S(@, I), or shortly S(I), of @ over an interval I as the
supremum of the sum I@(J)l-’"%]@(J)I, where (J,-.-, J) is
any finite, non-overlapping sequence of closed intervals in I. The
meanings of the expressions "rectifiable on I" and "locally rectifiable"
are obvious. Further the restriction s(J) of the function S(I) to
closed intervals J is plainly an additive interval-function (which is
not necessarily finite). We now associate with S a set-function S.
called measure-length induced by the curve . The value S,(E) for
any nonvoid set ER is by definition the infimum of the sum S(I)
-S(I2)-..., where (I, I2,-.-) is an arbitrary sequence (finite or in-
finite) of endless intervals together covering E; and we define the
value of S, for the void set to be zero. It is then easy to prove
the following statement:

THEOREM. The function S, hus constructed is an outer measure
of Carath$odory which fulfils S,(I)-S(I) for every endless interval L

When in particular the curve @ is locally rectifiable, the additive
interval-function s(J) considered above, being now finite, induces an
outer Carathodory measure s* by a standard procedure (see Saks
p. 64). But it is easily shown that s* is identical with S,. Indeed
we have S,(I)-s*(I) for every endless interval /, since S,(I)----S(I)
by the above theorem and since both S(I) and s*(I) are the supremum
of S(J) for closed intervals J in /. It follows at once that S, and
s* coincide for open sets. Now, for any set E of real numbers, s*(E)
is equal to the infimum of s*(D) for open sets D containing E (cf.
Saks, p. 68, below), and a corresponding assertion holds also for S,
as immediately seen from the definition of measure-length. Con-
sequently we must have S,(E)----s*(E).

REM.RK. As already observed in 2 the underlying space R is
supposed at least 2-dimensional, and this is sufficient for our purpose.
Needless to say, however, the considerations of this section remain
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valid for the 1-dimensional space as well.
5. Spheric measureAength. Let " be a spheric (or, more pre-

cisely, unit-spheric) curve in R. This means that r(t) is a unit-
vector of R for every point t of R. For any closed interval J
--[a,b], let us denote the angle r(a)or(b) by F(J)to shorten our
notations. Now the spheric length A(r, I), or simply A(I), of r over
an interval I is by definition the supremum of the sum F(J)+...
+F(J,) for finite, non-overlapping sequences (J1, "",J.} of closed
intervals in I. As is readily found, the curve " is locally rectifiable
if, and only if, A(I) is finite for all finite intervals I. Precisely as
S. was constructed from S in the foregoing 4, we can construct
from the spheric length A a set-function A. called spheric measure-
length induced by ’. The spheric analogue of the theorem of 4
reads now as follows:

THEOREM. The spheric measure-length i, is an outer Caratho-
dory measure and fulfils the relation A.(I)=(I) for every endless
interval I.

Finally, if - is locally rectifiable, the restriction of A to the class
of all closed intervals is a finite additive interval-function and induces
an outer Carath4odory measure which coincides with A..

6. Open relative derivates of additive set.functions. By an
additive set-function we shall understand as in our paper [3] any
finite set-function defined and additive for the bounded Borel sets
in R. Given a pair , of additive set-functions, suppose / non-
negative. We shall term open upper p-derivate of at a point c
of R the upper limit of the ratio (I)/p(I), where I is any open
interval which contains c and whose length tends to zero. It should
be remarked that for any real number a we mean by the quotient

a/O the values +oo, 0,--oo according as a>O,a-O,a<O respectively.
The open lower p-derivate of at c, we define in a corresponding
way. When the two open -derivates coincide, we shall call their
common value open p-derivative of 6 at the point c.

LEMMA. The open upper and lower p-derivates of an additive
set-function coincide at each p-nonlacunar point with (p)C(t)and
(p)_(t) respectively.

PROOF. Let J be a fixed closed interval [or open interval] con-
taining the point t and let I denote an arbitrary open interval con-
taining J or closed interval contained in J]. Then p(I) and (I)
plainly tend respectively to p(J) and (J) as the length ]Ii tends to
Jl. Consequently, since p(J)0 by hypothesis, the ratio (I)]p(1)
tends to (J)/p(J) as II] tends to JI. The assertion follows now
at once.

THEOREm. Given a nonnegative additive set-function besides
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p, let us write A for the set of all the points none of which are
lacunar with respect to both I and . Then,

( ) the relative derivative (/)’(t) exists at a point t of A if
and only if ()p’(t) exists, and when this is the case the two deriva-
tives are mutually reciprocal, i.e. we have

(/)’()---- 1/()/’() and ()/’()-- 1/(/)’()
under the convention that 1/0=+o and 1]-t-:0. Further, a
similar result holds for open relative derivatives as well.

( ii ) We have (R--M)-;(R--M):O for the set M of the points
t of A at which both (/)’(t) and ()/’(t) exist.

(iii) The open t-derivative of exists at a point to f A if and
only if (/)’(t) exists, and when this is the case the two derivatives
coincide. Further we may interchange here the roles of and .

POOF. Part (i) is evident and part (ii) is an immediate con-
sequence of part (i), Lebesgue’s theorem of [3] 4, and the lemma
of [8] 5. Finally, part (iii) follows readily from part (i) and the
lemma of the present section.

REMARK. As readily seen, the above definitions for open relative
derivates and open relative derivative remain meaningful if we con-
sider, instead of the functions / and , any two set-functions 0 and

respectively, each of which is defined at least for all open intervals
K, provided that for every K both O(K) and r(K) are finite and
O(K) is nonnegative.

7. Curvature and radius of curvature. Consider a light curve
which is locally rectifiable and locally straightenable. Let 2(I)and

S(I) denote respectively the bend and the length of over any inter-
val I, in conformity with 2 and 4. By the curvature of at a
point c of R we shall understand the open S-derivative of 2 at c,
supposed existent. This will be denoted by p(% c), or more simply,
by o(c). The radius of curvature of at c, for which we shall write
a(% c) or a(c), is defined correspondingly by interchanging the func-
tions S and in the above. The consistency of the aforesaid two
definitions with the classical ones is a direct consequence of the
theorem of [1] 68.

As we have already seen, each of the functions () and ()
induces an outer Carathodory measure, , and , respectively, such
that ,()--() and ,()----(I) whenever the interval I is endless.
Now both these outer measures assume finite values for bounded sets,
since the curve is |oca||y rectifiab|e and |ocal|y straightenable.
Moreover .()0 for all intervals , since () is always positive
by lightness of . Consequently the theorem of the preceding sec-
tion, together with the decomposition theorem of 3 8, readily
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yields us the following statement which constitutes the main result
of the present note:

THEOREM. For each point t of R the four quantities p(t), a(t),
(S,)9,(t), (9,)S(t) satisfy the alternative: either they all exist or else
none of them exist. If they exist, p(t) and a(t) are mutually recip-
rocal and we have

p(t)--(S,)(t) and a(t)--(2,)S(t).
Further, the points at which they commonly exist form together a
Borel set M such that S,(R--M)--9,(R--M)-- O, and if P and Q
denote the Borel sets of the points t of M at which p(t)--To and
a(t): -c respectively, then for every Borel set XR we have

e,(x)-e,(px)+ s,(x)-s,(Qx)+

REMARK. The additive class of sets which underlies integration
in the above we understand to be of course that of all Borel sets.
This accords with the fact that both the functions p(t) and a(t) are
B-measurable on the set M (cf. the end of 3] 3).

8. A lamina. In this concluding section we state a property of
measure-length and spheric measure-length which will be of use on a
later occasion. The proof will be given elsewhere.

LEMMA. Give a locally rectifiable curve in R, suppose that
c is a point of unilateral continuity of . Then we have

s,({c})=
for the measure-length S, induced by . Further, if the curve is
especially unit-spheric, we also have the following relation for the
spheric measure-length A,:

({c}) +).
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