50. Remarks on Katětov's Uniformly 0-dimensional Mappings

By Keiô NAGAMI

(Comm. by K. KUNUGI, M.J.A., April 12, 1961)

It seems to me that the notion of uniformly 0-dimensional mappings introduced by M. Katětov plays an essential rôle in his dimension theory for non-separable metric spaces [3]. Let R and S be metric spaces (with the metric ρ_1 and ρ_2 respectively) and f a continuous mapping of R into S. According to him, f is called $((\rho_1, \rho_2)$ -) uniformly 0-dimensional if the following condition is satisfied.

(*) For any $\varepsilon > 0$ there exists a $\delta > 0$ such that when $M \subset S$ and dia $M^{1)} < \delta$, $f^{-1}(M)$ can be decomposed into mutually disjoint relatively open (in $f^{-1}(M)$) sets whose diameters are less than ε .

He proved that for any metric space R with $\dim R^2 \le n^3$ there exists a uniformly 0-dimensional continuous mapping of R into the Euclidean n-space E^n . With the aid of this fundamental theorem he proved the decomposition theorem and in consequence the equality $\dim R = \operatorname{Ind} R^4$ for metric space R. Modifying Katětov's definition, we shall give in this note a definition of uniformly 0-dimensional continuous mappings of normal spaces into normal ones. Let R and S be normal spaces and f a uniformly 0-dimensional continuous mapping, in our sense, of R into S. Then it is the main purpose to show that $\dim R \le \dim S$ and $\operatorname{Ind} R \le \operatorname{Ind} S$.

Definition. Let R and S be topological spaces. Let $U=\{\mathfrak{U}_{\mathfrak{z}}; \lambda \in \Lambda\}$ and $V=\{\mathfrak{D}_{\mu}; \mu \in M\}$ be respectively collections of open coverings of R and S. Let f be a continuous mapping of R into S. Then we call that f is (U, V)-uniformly 0-dimensional if the following condition is satisfied:

(**) For any $\lambda \in \Lambda$ there exists a $\mu \in M$ such that for any $V \in \mathfrak{D}_{\mu}$ there exists a collection $\{H_{\alpha}; \alpha \in A\}$ of disjoint open sets of R with $\smile \{H_{\alpha}; \alpha \in A\} = f^{-1}(V)$ which refines \mathfrak{U}_{λ} .

Throughout this note the following notations will be used.

 U_{F} =the collection of all finite open coverings of R.

 U_B =the collection of all binary open coverings⁵⁾ of R.

¹⁾ dia M denotes the diameter of M.

²⁾ dim R denotes the covering dimension of R.

³⁾ Throughout this note n denotes a non-negative integer.

⁴⁾ Ind R denotes the large inductive dimension of R defined inductively as follows. For the empty set ϕ let $\operatorname{Ind} \phi = -1$. Suppose that $\operatorname{Ind} R' \leq n-1$ is defined. Then $\operatorname{Ind} R \leq n$ if for any pair $F \subset G$ ($\subset R$) of a closed set F and an open set G there exists an open set G with $G \subset G$ such that $\operatorname{Ind} \overline{H} = H$.

⁵⁾ A covering which consists of two elements is called a binary covering.

 V_F =the collection of all finite open coverings of S.

 V_A =the collection of all open coverings of S.

Theorem 1. Let R and S be normal spaces. If there exists a (U_B, V_F) -uniformly 0-dimensional continuous mapping f of R into S, it holds that dim $R \le \dim S$.

Proof. When $\dim S = \infty$, the theorem is clearly true. Let us consider the case $\dim S \leq n$. Let $\mathbb{I} = \{U_1, \cdots, U_k\}$ be an arbitrary finite open covering of R. Since R is normal, there exists a closed covering $\{F_1, \cdots, F_k\}$ of R such that $F_i \subset U_i$ for $i = 1, \cdots, k$. Since, for any i, $\{G_i, R - F_i\}$ is an element of U_B , there exists a finite open covering $\mathfrak{V}_i = \{V_\alpha; \alpha \in A_i\}$ of S such that, for any $\alpha \in A_i$, $f^{-1}(V_\alpha)$ is the sum of two disjoint open sets $H(\alpha, 1)$ and $H(\alpha, 2)$ which satisfy the following conditions: i) $H(\alpha, 1) \subset G_i$, ii) $H(\alpha, 2) \cap F_i = \emptyset$.

Let $\mathfrak{B}=\{V_{\alpha}; \alpha \in A\}$ be a finite open covering of S of order⁶⁰ $\leq n$ +1 which refines \mathfrak{V}_i for any i. Let φ_i be a refine-mapping of A into A_i , $i=1,\dots,k$. Let us consider, for every $\alpha \in A$, an open collection $\mathfrak{D}_{\alpha} = \{D(\varphi_i(\alpha), j) = f^{-1}(V_{\alpha}) \cap H(\varphi_i(\alpha), j); i=1,\dots,k, j=1,2\}.$ $\mathfrak{G}_{\alpha} = \{E_{\tau}; \gamma \in \Gamma_{\alpha}\}\$ be a collection of all open sets of type $\bigcap_{i=1}^{k} D(\varphi_{i}(\alpha), j_{i}).$ Since $\{D(\varphi_i(\alpha),j); j=1,2\}$ covers $f^{-1}(V_a)$ for every i, \mathfrak{G}_a covers $f^{-1}(V_a)$. Let $E_{r_i} = \sum_{i=1}^k D(\varphi_i(\alpha), j_i)$ and $E_{r_i} = \sum_{i=1}^k D(\varphi_i(\alpha), t_i)$ be different elements of \mathfrak{E}_a . Then there exists i_0 such that $j_{i_0} \neq t_{i_0}$. Hence $E_{r_1} \subset E_{r_2} \subset D(\varphi_{i_0}(\alpha), \varphi_{i_0}(\alpha))$ $j_{i_0} \cap D(\varphi_{i_0}(\alpha), t_{i_0}) \subset H(\varphi_{i_0}(\alpha), 1) \cap H(\varphi_{i_0}(\alpha), 2) = \phi.$ \mathfrak{E}_{α} is therefore a mutually disjoint open collection. Moreover we can prove that \mathfrak{E}_{α} refines Il as follows. Let E_r be an element of type $\bigcap_{\alpha} D(\varphi_i(\alpha), 2)$ of \mathfrak{E}_{α} . Then $E_r = \bigcap_{i=0}^k D(\varphi_i(\alpha), 2) \frown F_s \subset D(\varphi_i(\alpha), 2) \frown F_s \subset H(\varphi_i(\alpha), 2) \frown F_s = \phi$ for $s=1,\dots,k$. Hence $E_r \cap (\sum_{s=1}^k F_s) = \phi$. Since $\{F_1,\dots,F_k\}$ covers R, we get $E_r = \phi$. Let $E_{\delta} = \bigcap_{i=1}^k D(\varphi_i(\alpha), j_i)$ be an element of \mathfrak{G}_{α} such that for some i, say i_0 , $j_{i_0}=1$. Then $E_{\delta} \subset D(\varphi_{i_0}(\alpha), 1) \subset H(\varphi_{i_0}(\alpha), 1) \subset G_{i_0}$. Therefore \mathfrak{E}_{α} is a refinement of \mathfrak{U} .

Let $\mathfrak{E}=\{E; E\in\mathfrak{E}_a, \alpha\in A\}$. Then it can easily be seen that \mathfrak{E} is an open covering of R of order $\leq n+1$ which refines \mathfrak{U} . Thus we get $\dim R \leq n$ and the theorem is proved.

Since an arbitrary open covering of a paracompact Hausdorff space of covering dimension $\leq n$ can be refined by an open covering of order $\leq n+1$, we get at once the following proposition by the same argument as employed in the above proof.

⁶⁾ sup $\{|A(x)|; A(x) = \{\alpha; x \in V_{\alpha} \in \Re\}, x \in S\}$ is the order of \Re , where |A(x)| denotes the number of indices of A(x).

⁷⁾ A refine-mapping φ_i of A in A_i is one such that $V_{\alpha} \subset V_{\varphi_i}(\alpha)$ for every $\alpha \in A$.

Theorem 2. Let R be a normal space and S be a paracompact Hausdorff space. If there exists a (U_B, V_A) -uniformly 0-dimensional continuous mapping of R into S, it holds that dim $R \leq \dim S$.

The following proposition is also essentially proved in the proof of Theorem 1.

Corollary 1. Let R and S be normal spaces. If f is a (U_B, V_F) -uniformly 0-dimensional continuous mapping of R into S, it is (U_F, V_F) -uniformly 0-dimensional.

Analogously we get the following.

Corollary 2. Let R be a normal space and S a paracompact Hausdorff space. If f is a (U_B, V_A) -uniformly 0-dimensional continuous mapping of R into S, it is (U_F, V_A) -uniformly 0-dimensional.

Corollary 3. Let R be a normal space whose uniform structure is unique. If R is embedded into S, then $\dim R \leq \dim S$.

Proof. Let $\{G_1, G_2\}$ be an arbitrary binary relatively open covering of R. Then by Doss [1] one of $R-G_1=F_1$ and $R-G_2=F_2$ is compact and hence closed in S. Thus $\overline{F}_1 \curvearrowright \overline{F}_2 = \phi$ and hence $\{S-\overline{F}_1, S-\overline{F}_2\}$ is an open covering of S. It is evident that $(S-\overline{F}_i) \curvearrowright R=G_i$, i=1,2, we get dim $R \le \dim S$ by Theorem 1.

The first of the following two lemmas can be proved by an analogous method to the proof of Nagami [4, Lemma 5] which is nothing but the second lemma.

Lemma 1. Let R be a non-empty totally normal space. Then Ind $R \le n$ if and only if for every finite open covering \mathbb{I} of R there exists a mutually disjoint finite open collection $\mathfrak{B} = \{V\}$ such that i) $\overline{\mathfrak{B}} = \{\overline{V}\}$ refines \mathbb{I} , ii) $R - \smile V = \smile (\overline{V} - V)$, iii) Ind $(R - \smile V) < n - 1$.

Lemma 2. Let R be a non-empty hereditarily paracompact Hausdorff space, i.e. any of whose subspace is paracompact. Then Ind $R \le n$ if and only if for every open covering \mathbb{I} there exists a locally finite, mutually disjoint, open collection $\mathfrak{B}=\{V\}$ such that i) $\overline{\mathfrak{B}}^{9}$ refines \mathbb{I} , ii) $R-\smile V=\smile (\overline{V}-V)$, iii) Ind $(R-\smile V)\le n-1$.

Theorem 3. Let R be a normal space and S a non-empty totally normal space. If there exists a (U_B, V_F) -uniformly 0-dimensional continuous mapping of R into S, it holds that Ind $R \leq \text{Ind } S$.

Proof. When Ind $S=\infty$, the theorem is clearly true. Let us consider the case Ind $S<\infty$. Let (P_n) be the theorem for the case Ind $S\leq n$. Then (P_0) has already been proved in Theorem 1, since

⁸⁾ This notion was introduced by C. H. Dowker [2]. A topological space R is called totally normal if i) R is normal, ii) for any open set G of R there exists a sequence of mutually disjoint closed collections \mathfrak{F}_i which is locally finite in G such that $G = \bigcup \{F; F \in \mathfrak{F}_i, i=1,2,\cdots\}$.

⁹⁾ Since B is locally finite, B is also locally finite.

Ind $S \le 0$ implies dim $S \le 0$. Put the induction assumption that (P_{n-1}) , n > 0, is true. To show the validity of (P_n) , let Ind $S \le n$.

Let $F \subset G$ be an arbitrary pair of a closed set F and an open set G of R. Then there exists a finite open covering $\mathfrak{B} = \{V_{\alpha}; \alpha \in A\}$ such that, for every $\alpha \in A$, $f^{-1}(V_{\alpha})$ is the sum of two disjoint open sets W_{a1} , W_{a2} with $W_{a1} \subset G$ and $W_{a2} \cap F = \phi$. By Lemma 1 \mathfrak{B} can be refined by a mutually disjoint, finite open collection $\mathfrak{V}_1 = \{V_{\beta}; \beta \in B\}$ such that i) $\overline{\mathfrak{B}}_1$ refines \mathfrak{B}_1 , ii) $R - \smile V_{\beta} = \smile (\overline{V}_{\beta} - V_{\beta})$, iii) Ind $(R - \smile V_{\beta})$ $\leq n-1$. Let $\varphi: B \to A$ be a refine-mapping. Put $f^{-1}(\overline{V}_{\beta} - V_{\beta}) \cap W_{\varphi(\beta),i}$ $=F_{\beta i}$ and $f^{-1}(V_{\beta}) \cap W_{\varphi(\beta),i} = G_{\beta i}$, i=1,2. Let $W_i = \bigcup \{W_{\alpha i}; \alpha \in A\}, i=1,$ 2; then $W_1 \subset G$ and $F \cap W_2 = \phi$. Let $F_i = \bigvee \{F_{\beta_i}; \beta \in B\}$ and $G_i = \bigvee \{G_{\beta_i}; \beta \in B\}$ $\beta \in B$, i=1, 2; then $W_i \supset F_i \smile G_i$, i=1, 2. Let $F_i \smile G_i = H_i$, i=1, 2; then $\{H_1, H_2\}$ is a closed covering of R. Let D be the open kernel of H_1 ; then $\overline{D}-D\subset F_1$ and $F\subset D\subset G$. Let $f_1=f|\overline{D}-D$. Let U_B' and V_F' be respectively the restrictions of U_B and V_F on $\overline{D}-D$ and H=R $- \cup V_{\beta}$. Since $\overline{D} - D$ and H are closed, every binary relatively open covering of $\overline{D}-D$ and every finite relatively open covering of H are respectively elements of U_B and V_F . Moreover f_1 ; $\overline{D}-D \to H$ is evidently (U_B, V_F) -uniformly 0-dimensional, we have $\operatorname{Ind}(\overline{D}-D) \leq n-1$ by the induction assumption. Thus Ind $R \le n$ and the theorem is proved.

By Lemma 2 we get the following by an analogous argument to the above.

Theorem 4. Let R be a normal space and S a non-empty hereditarily paracompact Hausdorff space. If there exists a (U_B, V_A) -uniformly 0-dimensional continuous mapping of R into S, it holds that Ind $R \leq \operatorname{Ind} S$.

At the end of this note let us consider the relation between Katětov's original definition of uniformly 0-dimensional mappings and ours. A) Let R be a metrizable space and $U_c = \{ll_i; i=1, 2, \cdots\}$ be a collection of open coverings ll_i such that, for every $x \in R$, $\{S(x, ll_i)^{10}; i=1, 2, \cdots\}$ forms a complete system of neighborhoods of x. Let S be a metric space with the metric ρ_2 and f be a (U_c, V_A) -uniformly 0-dimensional continuous mapping of R into S. Then we can prove dim $R \leq \dim S$ as follows. When dim $S = \infty$, the proposition is evidently true. Hence we consider the case dim $S \leq n$. Let $\mathfrak{B}_i = \{V_{i}, \lambda_i \in \Lambda_i\}$, $i=1,2,\cdots$, be a sequence of locally finite open coverings of S of order $\leq n+1$ such that, i) $\overline{\mathfrak{B}}_{i+1}$ refines \mathfrak{B}_i , $i=1,2,\cdots$, and ii) for any $\lambda_i \in \Lambda_i$, $f^{-1}(V_{i_i})$ can be decomposed into a mutually disjoint open collection which refines \mathfrak{U}_i . Let $\mathfrak{B}_{\lambda_i} = \{W(\lambda_i, \mu); \mu \in M_{i_i}\}$, $\lambda_i \in \Lambda_i$, be a

¹⁰⁾ $S(x, \mathfrak{n}_i) = \smile \{U; x \in U \in \mathfrak{n}_i\}.$

mutually disjoint open collection of R with $f^{-1}(V_{i_l}) = \bigvee \{W(\lambda_i, \mu); \mu \in M_{i_l}\}$ which refines \mathfrak{U}_i . Let $\varphi_{i+1,i} \colon \Lambda_{i+1} \to \Lambda_i$ be a refine-mapping, $i=1,2,\cdots$, and put $\varphi_{j_1} = \varphi_{21} \cdots \varphi_{j-1,j-2} \varphi_{j,j-1}, j > i$. $\varphi_{jj} \colon A_j \to A_j$ denotes the identity mapping, $j=1,2,\cdots$. Then it can easily be seen that $\mathfrak{D}_j = \{W(\lambda_j,\mu_j) \cap W(\varphi_{j,j-1}(\lambda_j),\mu_{j-1}) \cap \cdots \cap W(\varphi_{j1}(\lambda_j),\mu_1); \ \mu_k \in M_{r_{jk}(\lambda_j)}, \ k=1,\cdots,j,\ \lambda_j \in \Lambda_j\},\ j=1,2,\cdots$, is a sequence of open coverings of R of order $\leq n-1$ such that, for every $x \in R$, $\{S(x,\mathfrak{D}_j);\ j=1,2,\cdots\}$ forms a complete system of neighborhoods of x. Moreover we can prove that \mathfrak{D}_{j+1} is a cushioned-refinement of \mathfrak{D}_j , $j=1,2,\cdots$. Therefore we get $\dim R \leq n$ by Nagami [5, Theorem 2.1]. B) We can construct a metric ρ_1 of R which agrees with the preasigned topology of R such that $\mathfrak{S}_i = \{S_{1/i}(x) = \{y; \rho_1(x,y) < 1/i\}; x \in R\}$ refines \mathfrak{U}_i , $i=1,2,\cdots$. If g is a (ρ_1,ρ_2) -uniformly 0-dimensional continuous mapping of R into R, then R is clearly R is a clearly R continuous mapping of R into R.

References

- [1] R. Doss: On uniform spaces with a unique structure, Amer. J. Math., 71, 19-23 (1949).
- [2] C. H. Dowker: Inductive dimension of completely normal spaces, Quart. J. Math., Oxford ser. (2), 4, 267-281 (1953).
- [3] M. Katětov: On the dimension of non-separable spaces. I, Čeckoslovack Mat. Ž., 2(77), 333-368 (1952).
- [4] K. Nagami: Some theorems in dimension theory for non-separable spaces, J. Math. Soc. Japan, 9, 80-92 (1957).
- [5] —: Note on metrizability and n-dimensionality, Proc. Japan Acad., 36, 565–570 (1960).

¹¹⁾ Let $\mathfrak{E}_1 = \{E_a; a \in A\}$ and $\mathfrak{E}_2 = \{E_\beta; \beta \in B\}$ be collections of subsets of R. Then \mathfrak{E}_1 is called a cushioned-refinement of \mathfrak{E}_2 , if there exists a refine-mapping $\varphi: A \to B$ such that, for any subset C of A, the closure of $\smile \{E_a; a \in C\}$ is contained in $\smile \{E_\beta; \beta \in \varphi(C)\}$.