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Remarks on Kat$tov’s Uniformly O.dil Mappings

By Kei5 IAGAMI
(Comm. by K. KUNUG, M.J.K., April 12, 1961)

It seems to me that the notion of uniformly 0-dimensional map-
pings introduced by M. Kattov plays an essential r61e in his dimension
theory for non-separable metric spaces [3]. Let R and S be metric
spaces (with the metric p and p. respectively) and f a continuous
mapping of R into S. According to him, f is called ((p, p.)-) uni-
formly 0-dimensional if the following condition is satisfied.
(,) For any e>0 there exists a >0 such that when MS and
dia M"<, f-(M) can be decomposed into mutually disjoint relatively
open (in f-(M)) sets whose diameters are less than e.

He proved that for any metric space R with dim R_< ns) there
exists a uniformly 0-dimensional continuous mapping of R into the
Euclidean n-space E. With the aid of this fundamental theorem he
proved the decomposition theorem and in consequence the equality
dim R=Ind R for metric space R. Modifying Kattov’s definition,
we shall give in this note a definition of uniformly 0-dimensional
continuous mappings of normal spaces into normal ones. Let R and
S be normal spaces and f a uniformly 0-dimensional continuous map-
ping, in our sense, of R into S. Then it is the main purpose to
show that dim R_dim S and Ind R_Ind S.

Definition. Let R and S be topological spaces. Let U={l,;
l} and V--{$; u M} be respectively collections of open coverings

of R and S. Let f be a continuous mapping of R into . Then we
call that f is (U, V)-ufor O-dsoa if the following con-
dition is satisfied:
(**) For any A there exists a M such that for any V$, there
exists a collection {H.; A} of disjoint open sets of R with {H.;

A}=f-(V) which refines 1I.
Throughout this note the following notations will be used.
U=the collection of all finite open coverings of R.
U=the collection of all binary open coverings of R.

1) diaM denotes the diameter of M.
2) dim R denotes the covering dimension of R.
3) Throughout this note n denotes a non-negative integer.
4) Ind R denotes the large inductive dimension of R defined inductively as follows.

For the empty set 4 let Ind 4---1. Suppose that Ind R’<-n--1 is defined. Then Ind
R t if for any pair FcG (cR) of a closed set F and an open set G there exists an
open set H with FcHcG such that Ind H--H) -< n--1.

5) A covering which consists of two elements is called a binary covering.
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V--the collection of all finite open coverings of S.
V:the collection of all open coverings of S.
Theorem 1. Let R and S be normal spaces. If there exists a

(U, V)-uniformly O-dimensional continuous mapping f of R into
S, it holds that dim R_<dim S.

Proof. When dim S-o, the theorem is clearly true. Let us
consider the case dim S_< n. Let lI-- { U,-. -, U} be an arbitrary finite
open covering of R. Since R is normal, there exists a closed cover-
ing {F,...,F} of R such that FU for i--1,...,k. Since, for
any i, {G, R--F} is an eIement of U, there exists a finite open
covering --{ V.; a eA} of S such that, for any a eA,, f-(V.) is the
sum of two disjoint open sets H(a, 1) and H(a, 2) which satisfy the
following conditions: i) H(a, 1)G, ii) H(a, 2)F--.

Let -{Va; aeA} be a finite open covering of S of order6’ _<n
-1 which refines for any i. Let be a refine-mapping7) of A
into A, i=l,..., k. Let us consider, for every a eA, an open collec-
tion )a-{D((a), )=f-l(Va)H((a), ); i-- 1,..., k, ---- 1, 2}. Let

(.={Er; .eF.} be a collection of all open sets of type D((a), ).
Since {D((a), ); 3"---- 1, 2} covers f-’(V.) for every i, . covers f-(V.).
Let Er,=_D((a),) and Er,--_D((a), t) be different elements of. Then there exists i0 such that ]oto. Hence E,E,CD(o(a),
j,0)D(,0(a), ,o)CH(o(a), 1)H(0(a), 2)--. is therefore a mutual-
ly disjoint open collection. Moreover we can prove that refines

1I as follows. Let Er be an element of type .D((a), 2)of @..

Then Er--.D((a), 2)F,CD(,(a), 2)F,CH(,(a), 2)F-- for

s--l,..., k. Hence Er(F,)--. Since {F,..., F} covers R, we

get Er--. Let E--=D((a),) be an element of . such that for

some i, say i0, ]0-- 1. Then ECD(o(a), 1)CH(0(a), 1)C G0. There-
fore . is a refinement of lI.

Let --{E; Ee., a eA}. Then it can easily be seen that is an
open covering of R of order _<n-l which refines lt. Thus we get
dim R_<n and the theorem is proved.

Since an arbitrary open covering of a paracompact Hausdorff
space of covering dimension _<n can be refined by an open covering
of order _<n-l, we get at once the following proposition by the
same argument as employed in the above proof.

6) supl A(z) I; A()=t:a; e Ve}, eS} is the order of , where A()i denotes
the number of indices of A(z).

7) A refine-mapping of A in A is one such that VcV() for every a e A.
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Theorem 2. Let R be a normal space and S be a paracompact

Hausdorff space. If there exists a (Us, V)-uniformly O-dimensional
continuous mapping of R into S, it holds tha dim R_<dim S.

The following proposition is also essentially proved in the proof
of Theorem 1.

Corollary, 1. Let R and S be normal spaces. If f is a (
uniformly O-dimensional continuous mapping of R into S,
(U, V)-uniformly O-dimensional.

Analogously we get the following.
Corollary, 2. Let R be a normal space and S a paracompact

Hausdorff space. If f is a (Us, V)-uniformly O-dimensional con-
tinuous mapping of R into S, it is (Ur, V)-uniformly O-dimensional.

Corollary, :. Let R be a normal space whose uniform structure
is unique. If R is embedded into S, then dim R_<dim S.

Proof. Let {G, G} be an arbitrary binary relatively open cover-
ing of R. Then by Doss 1] one of R--G--F and R--G.--F. is

compact and hence closed in S. Thus FIF.-- and hence {S--Fl,

S--F} is an open covering of S. It is evident that (S--F)R--G,
i-l, 2, we get dim R_<dim S by Theorem 1.

The first of the following two lemmas can be proved by an a-
nalogous method to the proof of Nagami [4, Lemma 5 which is noth-
ing but the second lemma.

Lemma 1. Let R be a non-empty totally normal space.8 Then
Ind R<_n if and only if for every finite open covering [ of R there
exists a mutually disjoint finite open collection 8--{V} such that i)
-{V} refines lI, ii) R--V-(V--V), iii) Ind(R--V)<_n--1.

Lemma 2. Let R be a non-empty hereditarily paracompact
Hausdorff space, i.e. any of whose subspace is paracompact. Then
IndR_<n if and only if for every open covering lI there exists a
locally finite, mutually disjoint, open collection 8--{V} such that i)

’ refines lI, ii) R-V=(V--V), iii) Ind (R--V)<_n--1.
Theorem :. Let R be a normal space and S a non-empty totally

normal space. If there exists a (Us, V,)-uniformly O-dimensional
continuous mapping of R into S, it holds that IndR_<IndS.

Proof. When IndS-oo, the theorem is clearly true. Let us
consider the case Ind S<: oo. Let (P) be the theorem for the case
IndS_<n. Then (Po)has already been proved in Theorem 1, since

8) This notion was introduced by C. H. Dowker [2]. A topological space R is
called totally normal if i) R is normal, ii) for any open set G of R there exists a sequence
of mutually disjoint closed collections , which is locally finite in G such that G=[F;
Fe, 4=1,2,- --}.

9) Since is locally finite, is also locally finite.
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Ind S_<0 implies dim S_< 0. Put the induction assumption that (P_),
n>0, is true. To show the validity of (P), let Ind S_< n.

Let FG be an arbitrary pair of a closed set F and an open
set G of R. Then there exists a finite open covering $-{V.; eA}
such that, for every seA, f-(V.) is the sum of two disjoint open
sets W,, W, with W,G and WoF--. By Lemma 1 can be
refined by a mutually disjoint, finite open collection --{V; eB}
such that i) refines , ii) R--V--(V--V), iii) Ind (R--
_<n--1. Let : B->A be a refine-mapping. Put f-(V--V)W.
--F and f (V) W).--G, i--1,2. Let W-- {W; a A}, i--1,
2; then WG and FW2=q. Let F--,[F,; B} and
flB], i=1,2; then WFG, i-1,2. Let F,G--H, i--1,2; then
{H, H2} is a closed covering of R. Let D be the open kernel of H;
then D--DCF and FDG. Let f--flD--D. Let U and V
be respectively the restrictions of U and V on D--D and

V. Since D--D and H are closed, every binary relatively open

covering of D--D and every finite relatively open covering of H are

respectively elements of U and V.. Moreover f; D--DH is evi-

dently (U, V.)-uniformly 0-dimensional, we have Ind(D--D)<_n--1
by the induction assumption. Thus IndR_<n and the theorem is
proved.

By Lemma 2 we get the following by an analogous argument to
the above.

Theorem 4. Let R be a normal space and S a non-empty heredi-
tarily paracompact Hausdorff space. If there exists a (U, V)-uni-
formly O-dimensional continuous mapping of R into S, it holds that
Ind R_<Ind S.

At the end of this note let us consider the relation between
Kattov’s original definition of uniformly 0-dimensional mappings
and ours. A) Let R be a metrizable space and Uv--[lt; i=1, 2,--.]
be a collection of open coverings 1I such that, for every xR, IS(x,
lI)); i-1,2,-..} forms a complete system of neighborhoods of x.
Let S be a metric space with the metric p. and f be a (U, V)-uni-
formly 0-dimensional continuous mapping of R into S. Then we can
prove dim R_<dim S as follows. When dim S- oo, the proposition is
evidently true. Hence we consider the case dim S<_n. Let --[V;
2A], i--1,2,..., be a sequence of locally finite open coverings of S
of order _<n-1 such that, i) / refines , i-1, 2,..., and ii) for
any 2eA, f-(V) can be decomposed into a mutually disjoint open
collection which refines It,. Let --[W(2, p); uM], 2eA,, be a
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mutually disjoint open collection of R with f-(V,)--{W(,, );
pM,} which refines lI. Let /,: A/--A be a refine-mapping, i
-1, 2,--., and put --..._,_,_, >i. : A-A denotes the
identity mapping, j---l, 2,..- Then it can easily be seen that

..,j, 2A}, ’=1, 2,..., is a sequence of open coverings of R of order
_n--1 such that, for every xR, IS(x, )); --1,2,---] forms a com-
plete system of neighborhoods of x. Moreover we can prove that
).+ is a cushioned-refinement) of ), j----l, 2,--- Therefore we get
dim R_n by Nagami [5, Theorem 2.1]. B) We can construct a metric
p of R which agrees with the preasigned topology of R such that
,-[S/,(x)-{y; p(x,y)<l/i}; xR] refines lI,, i=1, 2,.-- If g is a
(p, p)-uniformly 0-dimensional continuous mapping of R into S, then
g is clearly (Uc, V)-uniformly 0-dimensional.
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11) Letl-{Ea;aA] and .-[E;/eB] be collections of subsets of R. Then
is called a cushioned-refinement of , if there exists a refine-mapping :A--B such

that, for any subset C of A, the closure of {E,;C} is contained in {E; (C)}.


