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50. Remarks on Katétov’s Uniformly O-dimensional Mappings

By Kei6 NAGAMI
(Comm. by K. KUNUGI, M.J.A., April 12, 1961)

It seems to me that the notion of uniformly 0-dimensional map-
pings introduced by M. Katétov plays an essential rdle in his dimension
theory for non-separable metric spaces [3]. Let R and S be metric
spaces (with the metric o, and p, respectively) and f a continuous
mapping of R into S. According to him, f is called ((o,, p;)-) uni-
formly 0-dimensional if the following condition is satisfied.

(*) For any ¢>0 there exists a >0 such that when MCS and
dia MV <6, f (M) can be decomposed into mutually disjoint relatively
open (in f~(M)) sets whose diameters are less than e.

He proved that for any metric space B with dim R? < n® there
exists a uniformly 0-dimensional continuous mapping of R into the
Euclidean n-space E™. With the aid of this fundamental theorem he
proved the decomposition theorem and in consequence the equality
dim R=Ind R* for metric space R. Modifying Katétov’'s definition,
we shall give in this note a definition of uniformly 0-dimensional
continuous mappings of normal spaces into normal ones. Let R and
S be normal spaces and f a uniformly 0-dimensional continuous map-
ping, in our sense, of R into S. Then it is the main purpose to
show that dim R<dim S and Ind R<Ind S.

Definition. Let R and S be topological spaces. Let U={l,
2e4} and V={B,; pc M} be respectively collections of open coverings
of R and S. Let f be a continuous mapping of R into S. Then we
call that f is (U, V)-uniformly 0-dimensional if the following con-
dition is satisfied:

(xx) For any AeA there exists a ¢eM such that for any Ve®B, there
exists a collection {H,; acA} of disjoint open sets of B with —{H,;
acA}=f"YV) which refines l,.

Throughout this note the following notations will be used.

Uy=the collection of all finite open coverings of R.

Uyz=the collection of all binary open coverings® of R.

1) dia M denotes the diameter of M.

2) dim R denotes the covering dimension of R.

8) Throughout this note » denotes a non-negative integer.

4) Ind R denotes the large inductive dimension of R defined inductively as follows.
For the empty set ¢ let Ind¢=—1. Suppose that Ind R” <n—1 is defined. Then Ind
R <= if for any pair F'CG (CR) of a clesed set F' and an open set G there exists an
open set H with FC HCG such that Ind H—H) <n—1.

5) A covering which consists of two elements is called a binary covering.
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V.=the collection of all finite open coverings of S.

V,=the collection of all open coverings of S.

Theorem 1. Let R and S be normal spaces. If there exists a
(Ujg, Vy)-uniformly 0-dimensional continuous mapping f of R into
S, it holds that dim R<dim S.

Proof. When dim S=o, the theorem is clearly true. Let us
consider the case dim S<n. Let U={U,,---, U,} be an arbitrary finite
open covering of R. Since R is normal, there exists a closed cover-
ing {F,,---,F} of R such that F,C U, for ¢=1,---,k. Since, for
any ¢, {G,, R—F}} is an element of U, there exists a finite open
covering B,={V,; acA;} of S such that, for any acA, f(V,) is the
sum of two disjoint open sets H(a,1) and H(a, 2) which satisfy the
following conditions: i) H(a,1)CG,, ii) H(a,2)~F,=¢.

Let B={V,; acA} be a finite open covering of S of order® <=
+1 which refines B, for any ¢. Let ¢, be a refine-mapping” of A
into A4, 1=1,---, k. Let us consider, for every a€A, an open collec-
tion D,={D(¢(a), =" (V)~H(p(a), 5); 1=1,---, k, j=1,2}. Let
C,={E,; rel'.} be a collection of all open sets of type éD(%(a), Jo)-
Since {D(¢i(a), 7); =1, 2} covers f~(V,) for every ¢, €, covers f (V).
Let Er,=£\1D(€0i(a), J;) and E,,=i_:\1D(goi(a), t,) be different elements of

€,. Then there exists %, such that j,=-¢,. Hence E, ~E, C D(¢,(a),
Ji)~D(p,(a), t,)ZH(p;(a), 1)~H(¢; (a), 2)=¢. €, is therefore a mutual-
ly disjoint open collection. Moreover we can prove that €, refines

U as follows. Let E, be an element of type i.:\;D(%(a)’ 2) of €,
Then Er=éD(Soi(a)’ 2)/\F,CD(¢,(£¥), 2)AF3 CH(SOS(CY), 2)’\Fs=¢ for
s=1,--+,k. Hence E,A(gle,)=¢. Since {F,,---, F,} covers R, we

get E,=¢. Let E,=if:\1D(gp,(a), J;) be an element of €, such that for

some 1, say 4y, j,=1. Then E,C D(¢;(a), 1)C H(p;,(a), 1)CG,. There-
fore €, is a refinement of 1.

Let €={E; Ec€, acA}. Then it can easily be seen that € is an
open covering of R of order <n+1 which refines 1. Thus we get
dim R<n and the theorem is proved.

Since an arbitrary open covering of a paracompact Hausdorff
space of covering dimension <% can be refined by an open covering
of order <n+1, we get at once the following proposition by the
same argument as employed in the above proof.

6) sup{| A(x)|; A(x)={e; x€V.cB}, xS} is the order of B, where | A(z)| denotes
the number of indices of A(z).
7) A refine-mapping ¢; of A in A; is one such that V.CVelea) for every a€ A.



No. 4] Remarks on Katétov’s Uniformly 0-dimensional Mappings 209

Theorem 2. Let R be a normal space and S be a paracompact
Hausdorff space. If there exists a (Ug, V,)-uniformly 0-dimenstonal
continuous mapping of R into S, it holds that dim R<dim S.

The following proposition is also essentially proved in the proof
of Theorem 1.

Corollary 1. Let R and S be normal spaces. If f is a (Up, Vg)-
uniformly 0-dimensional continuous mapping of R into S, it s
(Uz, Ve)-uniformly 0-dimensional.

Analogously we get the following.

Corollary 2. Let R be a mormal space and S a paracompact
Hausdorff space. If f is a (Ug, V,)-uniformly 0-dimensional con-
tinuous mapping of R into S, it is (Uy, V,)-uniformly 0-dimensional.

Corollary 3. Let R be a normal space whose uniform structure
18 unique. If R is embedded into S, them dim R<dim S.

Proof. Let {G,, G;} be an arbitrary binary relatively open cover-
ing of R. Then by Doss [1] one of R—G,=F, and R—G,=F, is
compact and hence closed in S. Thus F,~F,=¢ and hence {S—F,
S—F} is an open covering of S. It is evident that (S—F)~R=G,,
1=1,2, we get dim R<dim S by Theorem 1.

The first of the following two lemmas can be proved by an a-
nalogous method to the proof of Nagami [4, Lemma 5] which is noth-
ing but the second lemma.

Lemma 1. Let R be a non-empty totally normal space® Then
Ind R<n if and only if for every finite open covering U of R there
exists a mutually disjoint finite open collection B={V} such that i)
B={V} refines 1, ii) R—— V=(V—V), iii) Ind(R——V)<n—1.

Lemma 2. Let R be a mon-empty hereditarily paracompact
Hausdorff space, i.e. any of whose subspace is paracompact. Then
Ind R<n if and only if for every open covering U there exists a
locally finite, mutually disjoint, open collection B={V} such that i)
B refines U, ii) R—— V= (V-V), iii) Ind (R——V)<n—1.

Theorem 3. Let R be a normal space and S a non-empty totally
normal space. If there exists a (Uj, Vy)-uniformly 0-dimensional
continuous mapping of R into S, it holds that Ind R<Ind S.

Proof. When Ind S=co, the theorem is clearly true. Let us
consider the case Ind S<o. Let (P,) be the theorem for the case
Ind S<n. Then (P,) has already been proved in Theorem 1, since

8) This notion was introduced by C. H. Dowker [2]. A topological space R is
called totally normal if i) R is normal, ii) for any open set G of R there exists a sequence
of mutually disjoint closed collections &, which is locally finite in G such that G="—{F;
Feg;, i=1’2"°°}' _

9) Since B is locally finite, 8 is also locally finite.
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Ind S<0 implies dim S<0. Put the induction assumption that (P,_,),
n>0, is true. To show the validity of (P,), let Ind S<=.

Let FCG be an arbitrary pair of a closed set F' and an open
set G of R. Then there exists a finite open covering B={V,; ac A}
such that, for every acA, f~Y(V,) is the sum of two disjoint open
sets W, W, with W,CG and W,~F=¢. By Lemma 1 B can be
refined by a mutually disjoint, finite open collection B,={V,; fe B}
such that i) B, refines B, ii) R— V,=(V,—V,), iii) Ind (R—- V)
<n—1. Let ¢: B>A be a refine-mapping. Put f "(I_’,—V,,)z-\ Weos.i
=Fy and f U (V)~ W =Gy 1=1,2. Let W,={W,; acd}, i=1,
2; then W,C G and F~AW,=¢. Let F,={F},; BB} and G,=“{G,;
BeB}, i=1,2; then W,D F,~G,, i=1,2. Let F,—~G,=H,, 1=1, 2; then
{H,, H,} is a closed covering of R. Let D be the open kernel of H,;
then D—DCF, and FCDCG. Let f,=f|D—D. Let U} and Vi
be respectively the restrictions of Uz and ¥V, on D—D and H=R
—+wV, Since D—D and H are closed, every binary relatively open
covering of D—D and every finite relatively open covering of H are
respectively elements of Ui and V. Moreover f;; D—D—>H is evi-

dently (Uj, Vi)-uniformly 0-dimensional, we have Ind (D—D)<n—1
by the induction assumption. Thus Ind R<n and the theorem is
proved.

By Lemma 2 we get the following by an analogous argument to
the above.

Theorem 4. Let R be a normal space and S a non-empty heredi-
tarily paracompact Hausdorff space. If there exists a (Ug, V., )-uni-
formly 0-dimensional continuous mapping of R into S, it holds that
Ind R<Ind S.

At the end of this note let us consider the relation between
Katétov’s original definition of uniformly 0-dimensional mappings
and ours. A) Let R be a metrizable space and U,={ll; i=1,2,---}
be a collection of open coverings U, such that, for every xzeR, {S(z,
u,)®; 1=1,2,---} forms a complete system of neighborhoods of .
Let S be a metric space with the metric p, and f be a (U, V,)-uni-
formly 0-dimensional continuous mapping of R into S. Then we can
prove dim R<dim S as follows. When dim S=, the proposition is
evidently true. Hence we consider the case dim S<n. Let &:{V,‘;
Aed}, 1=1,2,---, be a sequence of locally finite open coverings of S
of order <n+1 such that, i) B,,, refines B, i=1,2,---, and ii) for
any A,¢d, f “(Vai) can be decomposed into a mutually disjoint open
collection which refines U,. Let ‘«’B,‘={W(li, n; peMzi}, A€, be a

10) S, n)=AU;xcUen}.
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mutually disjoint open collection of R with [~ (V,)={W(1, p);
peM,} which refines .. Let ¢, ;: 4,.,,—>4; be a refine-mapping, ¢
=1,2,---,and put ¢;; =@y @, 1,;20;,5-1, I>% ¢;;: A;7>A; denotes the
identity mapping, j=1,2,--- . Then it can easily be seen that 9,
={W(,, )~ W(goj,f—l(zf)' /‘j—l)" IR W(iojl(lj), B); M€ vajk(l,» k=1,
<o,y 4,64}, 3=1,2,-- -, is a sequence of open coverings of R of order
<n—1 such that, for every z¢R, {S(x,D,); 7=1,2,---} forms a com-
plete system of neighborhoods of x. Moreover we can prove that
D,,, is a cushioned-refinement'” of ®,, j=1,2,--- . Therefore we get
dim R<n by Nagami [5, Theorem 2.1]. B) We can construct a metric
o, of R which agrees with the preasigned topology of R such that
&, ={8,4(x)={y; ps(z, ¥)<1/i}; ze R} refines U, 1=1,2,--- . If gis a
(01, p;)-uniformly 0-dimensional continuous mapping of R into S, then
g is clearly (U, V,)-uniformly 0-dimensional.
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11) Let€,={E.; a€ A} and G;={FEjp; B€ B} be collections of subsets of R. Then
G, is called a cushioned-refinement of G, if there exists a refine-mapping ¢:A—B such
that, for any subset C of A, the closure of {E.; acC} is contained in ‘“{Ej; Be ¢(C)}.



