No. 4] 183

44. On Metric General Connections

By Tominosuke OTSUKI
Tokyo Institute of Technology, Tokyo
(Comm. by Z. SUETUNA, M.J.A., April 12, 1961)

In this note, the author will show that the Levi-Civita’s connec-
tions of Riemann spaces can be generalized in the theory of general
connections under some conditions on an nm-dimensional differentiable
manifold X. He will use the notations in [3].

1. A tensor P of type (1,1) is called normal when P as a homo-
morphism of the tangent bundle 7'(X) of X is an isomorphism on each
P(T (X))=P.(X), zcX, and dim P_(X) is constant. Let us assume that
P is normal and put dim P (X)=m. If we put N_.(X)=the kernel of
P on T,.(X), then we have

T(%)=P(¥)+ N, (X).
According to the direct sum decomposition of T'(X), we define two pro-
jections A and N which map T.(X) onto P,(X) and N,(X) respectively
at each point £ of X. A and N may be considered as tensors of type
(1,1) of X. Clearly we have A+N=1I, A=A, N2=N, AN=NA=0,
AP=PA=P and NP=PN=0, where I denotes the fundamental unit
tensor of type (1, 1).

Now, we say that a normal tensor P is orthogonally related with
a non-singular symmetric tensor G=g, du‘®dw’, if P,(¥) and N,(¥)
are mutually orthogonal with respect to G, regarding G as a metric
tensor.

A general connection I", which is locally written as

I' =0u,Q (Pjd*w!+I'} duw’ @du™),’ ou,=ad/ou’,
is called mormal, if the tensor P=2A(I")” =0u,® Pjdu’ is normal.

A normal general connection I" is called proper® if the tensor
of type (1,2) with local components NiI'} vanishes, where Nj are the
local components of the tensor N.

We say that a general connection I" satisfies the metric condition
for a symmetric covariant tensor G=g, du'®du’, if
(1) DG=g,; ,du’ @ du’ @du*=0,
where DG denotes the covariant differential of G with respect to I'.*
On the metric condition, the following theorem holds good as in the

1) See [8].
2) See [3], §2.
3) On the geometrical meaning of this condition, see Theorem 5.2 of [4]. In

general, I” },, are not local components of a tensor of type (1,3) as the classical affine

connections but NiI'} are so.

4) See (2.15) of [3].
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classical case.

Theorem 1. Let I' be a metric general connection with respect
to a symmetric covariant temsor G of order 2. For any two con-
travariant vectors with local components v¢ and w' defined on a
curve u'=u'(t) along which they are covariantly constant, the scalar
9. PPPjv'w! is constant.” Conversely, if I has the property for any
curve, then I' is metric with respect to G.

Proof. The metric condition (1) is written as

9ijn=— 33;: PfP;—gmAghP;_ngz!A:h=0,

where
oP;
our

=T
Clearly, g,,, can be also written as
(2) 0uin=r(0uPP)~ 0, TP}~ 0, PiT .

Now, let V=v‘u,, W=w'u, be covariantly constant along a curve
u*=u'(t), then it must hold good
(3) Dvi=Pidv+T'pvidu*=0, Dw'=Pldw’+Iiw'du*=0
along the curve. Hence, we have
d(9,.PiPv'w’)=d(9, PiP;)v'w’ + 9, (Pidv") Pjw’ + g, Piv'( Pidw’)
=[d(9,.PiP})— 9, 1" Pdu* — g, Pl sdu" Jv'w?
=g,; ,v'w/du’.
Since, at any point of a curve, we have solutions of (8) with any
initial values at the point, the condition:g,;,=0 is equivalent to the
condition : d(g, PiPjv'w’)=0 for any curve and any two contravariant
vector fields v* and w® covariantly constant along the curve. q.e.d.
2. Now we shall prove the following
Theorem 2. Let P=Piou,Qdw’ and G=g,,du'®@du’ be a normal
tensor and a mon-singular symmetric tensor on ¥ such that P is
orthogonally related with G. Then, there exist normal gemeral con-
nections I' which satisfy the following conditions:
(i) P=al), (ii) I is proper, and
(iii) I" s metric with respect to G.
Furthermore, if we add the condition:

(iv) Shdy=—A{Pi—Pi) 4},
where A} are the local components of A, S},,:-é—(l"g,——l’zj)

and the semi-colon “;” denmotes the covariant derivatives with respect
to the Levi-Civita’s connection made by G, then I' is uniquely deter-
mined.

5) For general connections, the covariant differentiation and the contraction are
not necessarily commutative. See [3], §2.
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The condition (iv) is a generalization of the symmetric condition
in the classical case, because we have Aj;=0; and Pj,=0, when P;=d;.

Proof. Now, let be given two tensors P and G as stated in the
theorem and assume that there exists a normal general connection I"
satisfying the conditions (i), (ii) and (iii).

If we put

Gu=0uPiP} =" (Th+T%), Sh=2(T5—T%),
the condition (iii) can be written as
( 4) %zfith;+fjthi’c+SiknP;+Sjthf,

where
Fikhzgktf::h! Siin=9Sh.-
As easily seen, S}, are the local components of a tensor of type (1, 2)
as in the classical case. If we denote the Christoffel symbols of the
first kind made by g,; by
a9 ag 09, )
} h ( ih On; __ 094 ,
(g, k)= o + o
then (4) is clearly equivalent to
(5) [ij’hj=I_1iijIIf+ShkiP;+Shijtlc'

Now, let @ be the homomorphism of 7'(X) which operates as
Q=P on each P, (X) and @=0 on each N,(X). Then we have easily
PQ=QP=A, QN=NQ=0.

Let Q; be the local components of Q. Then, we get from (5)

(6 ) [m]Qgi:file;"i_(SlkiP;"'Slijik)Q;
and
( 7 ) [m]N;-:(SmP;’FSszf)NIf-

Making use of the relations between A, N, P and @, we can easily
see that (5) is derived from (6) and (7).
The condition (ii) can be written as

(8) NiT%=0
and
(9) N;iSE=0.

Therefore, in order to obtain a normal general connection I” satisfying
the conditions (i), (ii) and (iii), it is sufficient that we solve firstly
the equations (7) and (9) with respect to S;,.— —Si,, and secondly the
equations (6) and (8) with respect to IT§,, 35, using the solution S},
of (7) and (9).

In the first place, we shall show that there exists a solution of
(7) and (9) under the condition between P and G. We have

2[?:7.71N’—{ (g.tP:P'>+ (9..P3PY)— —,(g.,P:P;)}N:
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oP;  oP} oP; oP;

—([sl, 61+t sDPIPY N
that is
10 [GING= {2 0u(Pim Pi)Pi+—0u(Ply—Pi)PH N,
where [ij,h] are the Christoffel symbols of the first kind made by g;,.

Comparing (10) with (7), we define a tensor of type (1,3) with
local components

) Siv=—3 AUPL—PAy),
then we have
(80P + 8., PHNi=9,(S!,Pi+ S, PE)N;
= (L 0.(PL— Pi)Pi+ 2 g.(Ply— Py P2} N

— {0 NPy (Pl Pi)+ 0, N:PH(Pl— P

=[43,11N},
since we have g,,PiN{=0. On the other hand, we have

NiSp=1 NiAK(P},—Pi)=0.
Thus, we have proved that the tensor Sj, is a solution of (7) and (9).
Now, if we put
S;;;“S;;;: Xj‘h= - Xl:j!
they must satisfy the equations

(12) (XlkiP:-i_Xlijf)Nhl,:O’
(13) N{X5=0.

Furthermore, supposing the condition (iv), it can be written as
(14) X, A45=0.

It is equivalent to
XinNj =X,
and so (12) can be written as
X P¥+ X, ,PE=0.
Hence Y,,;,=X,, Py are skew-symmetric with respect to the indices %,
h, j. Using (14), we get
Yiij;::‘Xile ,ﬁAi:){iuP ;.= ij
= YkijA:"_" — X jA:P =0,

hence
(15) X, A5=0.

On the other hand, from the assumption that P is orthogonally
related with G, we have
(16) [ +Ni=0.



No. 4] On Metric General Connections 187

Using these relations (15), (13) and (16), we have

Xihj=Xiijtf =X‘ljgklN: =thgk1A£Nrf =0.
Thus, we have proved that under the conditions (i)-(iv), there exists
a unique solution Sj, which is the skew-symmetric part of I7},.

In the next place, we shall show that there exists a unique
solution I—’;,. of (6) and (8) under the conditions (i), (ii), and (iii) regard-
ing S;, as a known tensor.

Let us take a local field of frame {V,} of the tangent bundle T'(X)
of X such that {V,---,V,} and {V,,,,---, V,} are frames of P (X)
and N,(X) at each point x respectively. Let {U’} be the dual frame of
{V.}. Then we have A;=V;U;, N;=V3US® U*=g"U} can be written
as U¥=C*V, hence we have

Cr*=g"U}U;=C", |C*| 0.
If we put
CI# =9:; Vi V,‘f =CI‘1’
the matrix (C,,) is the inverse of the matrix (C*). By virtue of the
assumption of this theorem, we have
C..=C"*=0.
Now, (8) is clearly equivalent to
Usrs,=0, A=m+1,---,n
and so we have
f ilj UAlzfiszAvie:Oa
hence
an I',;N}=0.
From (6) and (17), we get
finj:([m]'_SmPf_Stijf)Q;
and
(18) f?j=([m]—SmP ; “Such H )Q;gph'
Conversely, l_”.’,‘, given by (18) satisfy (6) and (8), as is easily seen.

Lastly, we must show that aui®(P;d2u"+(f§,.+S;h)du’ Rdut) is a
general connection. It is sufficient to show that ou,&® (Pjd*u’ +l_“;hdu’
®du") is a general connection. Here, let us denote the components

in another coordinate system v* by the notations with stars. Then
we have

eyl a a’v T T i
P98, 20 20 (T 10— 82P%5—55,2) 20 20 ) g
0 Y —x 0 , 0V ov*
= a?;v (g“ "R aufaui+mﬁ53f')'
6) Indices run as follows: 1,/1,11,"'21,2,"',%; @, Br"'=112r"'rm; Ar B""

=m+1,---,n
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Since we have
gikQ;cL.(_hj=ng1’:guP;iP.;:gnAingf
= P{—g*g, NP} =P},
the above equation can be written as
—_ h 12,44 —_— 2
ng au (P*,, a'U +I—1*,,3_’v 31)::).

v’ Yowou: M ut ow
This shows that ow,® (Pjd*w+I%,du’@du”) determines a general
connection. Thus, we have proved the theorem. q.ed.
References

[1] T. Otsuki: On tangent bundles of order 2 and affine connections, Proc. Japan
Acad., 34, 325-330 (1958).

[2] ——: Tangent bundles of order 2 and general connections, Math. J. Okayama
Univ., 8, 143-179 (1958).
[8] ——: On general connections I, Math. J. Okayama Univ., 9, 99-164 (1960).

[4] ——: On general connections II, Math. J. Okayama Univ., 10, 113-124 (1961).



