59. Heisenberg's Commutation Relation and the Plancherel Theorem

By Masahiro Nakamura*) and Hisaharu Umegaki**)
(Comm. by K. KunUgi, m.J.A., May 13, 1961)

1. Let G and X be a locally compact abelian group and its character group, with the Haar measures $d g$ and $d \chi$, respectively. For a Borel subset S of G

$$
\begin{equation*}
E(S) f(g)=C_{S}(g) f(g) \tag{1}
\end{equation*}
$$

where $C_{s}(g)$ is the characteristic function of S, defines a spectral measure $d E$ acting on $L^{2}(G)$. It is easy to see that $d E$ satisfies

$$
\begin{equation*}
U(g) E(S)=E(g S) U(g), \tag{2}
\end{equation*}
$$

for the regular representation $U(g)\left(f(\cdot) \rightarrow f\left(g^{-1} \cdot\right)\right)$ of G on $L^{2}(G)$. Using $d E$, one can define

$$
\begin{equation*}
V(\chi)=\int \overline{\chi(g)} d E(g) \tag{3}
\end{equation*}
$$

for each character $\chi \in X$, where the integration ranges over G. It is not hard to see that $V(\chi)$ is a strongly continuous unitary representation of X. The pair $U(g)$ and $V(\chi)$ satisfies the so-called Heisenberg's commutation relation:

$$
\begin{equation*}
U(g) V(\chi)=\chi(g) V(\chi) U(g) \tag{4}
\end{equation*}
$$

The representations of a pair of unitary groups satisfying (4) are discussed initially by M. H. Stone [4] and J. von Neumann [3] for n-parameter cases. Their Theorem is generalized to locally compact abelian separable groups by G. W. Mackey [2] and improved away the separability by L. H. Loomis [1], which is stated as the following way: Let $U^{\prime}(g)$ and $V^{\prime}(\chi)$ be strongly continuous unitary representations of G and X on a Hilbert space, respectively, satisfying Heisenberg's commutation relation (4), then, according to the pair $U^{\prime}(g)$ and $V^{\prime}(\chi)$ being irreducible or not, that pair is unitarily equivalent to the pair of the representations $U(g)$ and $V(\chi)$ or to direct sum of their replicas. This theorem will be referred as MackeyLoomis' Theorem.

The purpose of the present note is to show that Heisenberg's commutation relation (4), i.e. Mackey-Loomis' Theorem, implies the Plancherel Theorem. Since the proof of Mackey-Loomis does not assume the duality theorem, our task may be observed with some interests.

[^0]2. Let $d E^{\prime}$ be the spectral measure acting on $L^{2}(X)$, which is defined by the characteristic functions $C_{S^{\prime \prime}}$ of Borel sets S^{\prime} in X. Denote
$$
U^{\prime}(g)=\int \overline{\chi(g)} d E^{\prime}(\chi)
$$

Then $U^{\prime}(g)$ is a strongly continuous unitary representation of G. It is easy to see that $U^{\prime}(g)$ is a multiplication operator over $L^{2}(X)$ by a Borel measurable function $F_{g}(\chi)$, and hence $U^{\prime}(g h)=U^{\prime}(g) U^{\prime}(h)$ and the strong continuity imply $F_{g}(\chi)=\chi(g)$, i.e. the inner product ($U^{\prime}(g)$ $\xi, \eta)=\int \overline{\chi(g)} \xi(\chi) \overline{\eta(\chi)} d \chi$ for every $\xi, \eta \in L^{2}(X)$. Denote the regular representation of X by $V^{\prime}(\chi)$. Then the pair $U^{\prime}(g)$ and $V^{\prime}(\chi)$ satisfies the commutation relation (4), because $E^{\prime}\left(S^{\prime}\right) V^{\prime}(\chi)=V^{\prime}(\chi) E^{\prime}\left(\chi^{-1} S^{\prime}\right)$. Moreover such a pair $U^{\prime}(g)$ and $V^{\prime}(\chi)$ is irreducible. Indeed, let a be a bounded operator on $L^{2}(X)$ commuting with all $U^{\prime}(g)$ and $V^{\prime}(\chi)$. Since the von Neumann algebra A generated by $U^{\prime}(g), g \in G$, is maximally abelian, a belongs to A and a multiplication operator by a Borel measurable function $a(\chi)$. While

$$
a\left(\chi^{-1} \chi_{1}\right) \xi\left(\chi^{-1} \chi_{1}\right)=V^{\prime}(\chi)(a \xi)\left(\chi_{1}\right)=a\left(V^{\prime}(\chi) \xi\right)\left(\chi_{1}\right)=a\left(\chi_{1}\right) \xi\left(\chi^{-1} \chi_{1}\right)
$$

implies that $a\left(\chi^{-1} \chi_{1}\right)=a\left(\chi_{1}\right)$ for all χ and a.e. $\chi_{1} \in X$. Hence a is a constant operator.

Since U^{\prime} and V^{\prime} satisfy (4), it is possible to apply Mackey-Loomis' Theorem on U^{\prime} and V^{\prime}, that is, there exists a unitary transformation T mapping $L^{2}(G)$ onto $L^{2}(X)$ such that

$$
\begin{equation*}
U^{\prime}(g) T=T U(g) \quad \text { for every } g \in G \tag{5}
\end{equation*}
$$

and
(6)

$$
V^{\prime}(\chi) T=T V(\chi) \quad \text { for every } \chi \in X
$$

Let F be the transformation mapping $L^{1}(G)$ into the space of continuous functions on X, defined by the following:

$$
(F \varphi)(\chi)=\int \overline{\chi(g)} \varphi(g) d g \quad \text { for every } \varphi \in L^{1}(G)
$$

Then it will be proved the followings:
Lemma 1. $T(\varphi * \psi)=(T \varphi)(F \psi)$ for every $\varphi, \psi \in L^{1}(G) \frown L^{2}(G)$, where $\varphi * \psi$ denotes the convolution of φ and $\psi .^{1)}$

Proof. For a.e. $\chi \in X$,

$$
T(\varphi * \psi)(\chi)=T\left[\int \varphi\left(g^{-1} \cdot\right) \psi(g) d g\right](\chi)=T\left[\int U(g) \varphi(\cdot) \psi(g) d g\right](\chi),
$$

where the integration is L^{2}-valued Bochner integral and T is bounded, and hence the integration commutes with the operator T, therefore

[^1]\[

$$
\begin{aligned}
& =\int[(T U(g) \varphi)(\chi) \psi(g)] d g=\int\left(U^{\prime}(g) T \varphi\right)(\chi) \psi(g) d g \\
& =\int \overline{\chi(g)}(T \varphi)(\chi) \psi(g) d g=(T \varphi)(\chi) \int \overline{\chi(g)} \psi(g) d g \\
& =(T \varphi)(F \psi)(\chi) .
\end{aligned}
$$
\]

Lemma 2. There exists a measurable function $\alpha(\chi)$ on X such that $(T \varphi)(\chi)=\alpha(\chi)(F \varphi)(\chi)$, a.e. in X, for every $\varphi \in L^{1}(G) \frown L^{2}(G)$.

Proof. Let $\left\{e_{\alpha}\right\}$ be an approximate identity in $L^{1}(G)$ generated by a complete neighbourhood system $\left\{N_{\alpha}\right\}$ of the unit of G. Then e_{α} belongs to $L^{1}(G) \frown L^{2}(G)$. For such $e_{\alpha}, e_{\alpha} * \varphi \rightarrow \varphi$ in both L^{1} - and L^{2} means, therefore, $T\left(e_{\alpha} * \varphi\right) \rightarrow T \varphi$ in L^{2}-mean. While by Lemma $1, T\left(e_{\alpha} *\right.$ $\varphi)=\left(T e_{\alpha}\right)(F \varphi)$. Since $\left\{F \varphi ; \varphi \in L^{1}(G) \frown L^{2}(G)\right\}$ is uniformly dense in $C_{\infty}(X)$, where $C_{\infty}(X)$ is the space of all continuous functions on X vanishing at infinite, $\lim _{\alpha} T e_{\alpha}$ exists ($=\alpha$, say) and is clearly measurable. Therefore $\left(T e_{\alpha}\right)(F \varphi)(\chi) \rightarrow \alpha(\chi)(F \varphi)(\chi)=(T \varphi)(\chi)$ a.e. in X.

Lemma 3. The function $\alpha(\chi)$ equals to a non-zero constant α_{0}, say $\left|\alpha_{0}\right|=1 / c$, a.e. in X.

Proof. By (6) and Lemma 2, for any $\varphi \in L^{1}(G) \frown L^{2}(G)$
$(T V(\chi) \varphi)\left(\chi_{1}\right)=\left(V^{\prime}(\chi) T \varphi\right)\left(\chi_{1}\right)=V^{\prime}(\chi)(\alpha \cdot F \varphi)\left(\chi_{1}\right)=\alpha\left(\chi^{-1} \chi_{1}\right)(F \varphi)\left(\chi^{-1} \chi_{1}\right)$.
While, $(T V(\chi) \varphi)\left(\chi_{1}\right)=\alpha\left(\chi_{1}\right) \cdot F(V(\chi) \varphi)\left(\chi_{1}\right)=\alpha\left(\chi_{1}\right)(F \varphi)\left(\chi^{-1} \chi_{1}\right)$. Hence $\alpha\left(\chi_{1}\right)$ $=$ constant a.e. in X.
3. Summing up Lemmas 1,2 and 3, one has immediately

The Plancherel Theorem. Denote the Fourier transformation by \mathscr{F} which is defined such that ${ }^{2 \lambda}$

$$
\mathscr{F}: \varphi \in L^{2}(G) \rightarrow \frac{1}{c} \int \overline{\chi(g)} \varphi(g) d g .
$$

Then, for every $\varphi, \psi \in L^{2}(G)$

$$
\begin{equation*}
\int|(\mathscr{I} \varphi)(\chi)|^{2} d \chi=\int|\varphi(g)|^{2} d g \tag{7}
\end{equation*}
$$

and

$$
\int(\mathscr{F} \varphi)(\chi) \overline{(\mathcal{F} \psi)(\chi)} d \chi=\int \varphi(g) \overline{\Psi(g)} d g .
$$

In this Theorem, the formula (8) follows immediately from (7). Let \mathscr{F}^{-1} be the inverse of \mathscr{F}, then \mathscr{F}^{-1} is unitary transformation from $L^{2}(X)$ onto $L^{2}(G)$, and we prove the following

The Fourier inversion formula. $\quad\left(\mathscr{F}^{-1} \xi\right)(g)=\frac{1}{c} \int \chi(g) \xi(\chi) d \chi$ a.e. $g \in G$ for every $\xi \in L^{1}(X) \subset L^{2}(X)$.

Proof. For every $\psi \in L^{1}(G) \frown L^{2}(G)$, the inner product

$$
\left(\mathscr{F}^{-1} \xi, \psi\right)=\left(\mathscr{F} \mathscr{F}^{-1} \xi, \mathscr{F} \psi\right)=(\xi, \mathscr{F} \psi)=\int \xi(\chi) \overline{(\mathcal{F} \psi)(\chi)} d \chi
$$

2) For the function $\varphi \in L^{2}(G)$ not belonging to $L^{1}(G)$, the transformation is defined by the L^{2}-approximation.

$$
\begin{aligned}
& =\frac{1}{c} \int_{X}\left[\int_{G} \xi(\chi) \chi(g) \overline{\psi(g)} d g\right] d \chi=\frac{1}{c} \int_{G}\left[\int_{X} \xi(\chi) \chi(g) d \chi\right] \overline{\psi(g)} d g \\
& =\left(\frac{1}{c} \int_{X} \xi(\chi) \chi(\cdot) d \chi, \psi\right)
\end{aligned}
$$

Therefore $\left(\mathscr{F}^{-1} \xi\right)(g)=\frac{1}{c} \int_{X} \chi(g) \xi(\chi) d \chi$ a.e. $g \in G$.
Finally, it will be remarked, that $c=\sqrt{2 \pi}$ when G is the real line, that is,

$$
(\mathscr{F} \varphi)(\lambda)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i t \lambda} \varphi(t) d t
$$

Indeed, let $C_{1}(t)$ be the characteristic function of the interval [$\left.-1,1\right]$, then by Lemma $2\left(T C_{1}\right)(\lambda)=(1 / c)\left(F C_{1}\right)(\lambda)=\left(e^{i \lambda}-e^{-i \lambda}\right) / i c \lambda=(2 / c)(\sin \lambda / \lambda)$. Since T is unitary,

$$
2=\int_{-\infty}^{\infty}\left|C_{1}(t)\right|^{2} d t=\int_{-\infty}^{\infty}\left|\left(T C_{1}\right)(\lambda)\right|^{2} d=\left(\frac{2}{c}\right)^{2} \int_{-\infty}^{\infty}\left|\frac{\sin \lambda}{\lambda}\right|^{2} d=\frac{4 \pi}{c^{2}}
$$

i.e. $c=\sqrt{2 \pi}$.

References

[1] L. H. Loomis: Note on a theorem of Mackey, Duke Math. J., 19, 641-645 (1952).
[2] G. W. Mackey: A theorem of von Neumann and Stone, Duke Math. J., 16, 313-326 (1949).
[3] J. von Neumann: Eindeutigkeit der Schrödingerchen Operatoren, Math. Ann., 104, 510-578 (1931).
[4] M. H. Stone: Linear transformations in Hilbert space III, Operational methods and group theory, Proc. Nat. Acad. Sci., 16, 172-175 (1930).

[^0]: *) Osaka Gakugei Daigaku.
 **) Tokyo Institute of Technology.

[^1]: 1) For any bounded linear transformation L from $L^{2}(G)$ into or onto $L^{2}(X), U^{\prime}(g) L$ $=L U(g)$ if and only if $L(\varphi * \psi)=(L \varphi)(F \psi)$. Indeed, the 'only if' part is proved by the same way of the proof of Lemma 1, and the 'if' part may be proved by using of the approximate identity $\left\{e_{\alpha}\right\}$ and by similar method of the proof of Lemma 2. We omit it.
