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59. Heisenberg’s Commutation Relation and the
Plancherel Theorem

By Masahiro NAKAMURA*) and Hisaharu UMEGAKI**)

(Comm. by K. KUNUGI, .J._., May 13, 1961)

1. Let G and X be a locally compact abelian group and its
character group, with the Haar measures dg and d;, respectively. For
a Borel subset S of G
( 1 ) E(S)f(g)=C(g)f(g),
where Cs(g) is the characteristic function of S, defines a spectral
measure dE acting on L(G). It is easy to see that dE satisfies

( 2 ) U(g)E(S)=E(gS) U(g),
for the regular representation U(g)(f(.)-f(g-.)) of G on L2(G).
Using dE, one can define

( 3 ) v(z)-fz(a)dE(a),
for each character z eX, where the integration ranges over G. It is
not hard to see that V(Z) is a strongly continuous unitary representa-
tion of X. The pair U(g) and V) satisfies the so-called Heisenberg’s
commutation relation:
( 4 ) u(a)v(z)=z(a)v(z) u(a).

The representations of a pair of unitary groups satisfying (4)
are discussed initially by M. H. Stone [4] and J. yon Neumann
for n-parameter cases. Their Theorem is generalized to locally com-
pact abelian separable groups by G. W. Mackey [2] and improved
away the separability by L. H. Loomis [1], which is stated as the
following way: Let U’(g) and V’(Z) be strongly continuous unitary
representations of G and X on a Hilbe$ space, espectively, satisfy-
ing Heisenberg’s commutation relation (4), hen, according $o She
pair U(g) and V’() being irreducible or not, that pair is uni$arily
equivalent to the pair of She representations U(g) and
direct sum of their replicas. This theorem will be referred as Mackey-
Loomis’ Theorem.

The purpose of the present note is to show that Heisenberg’s
commutation relation (4), i.e. Mackey-Loomis’ Theorem, implies the
Plancherel Theorem. Since the proof of Mackey-Loomis does not
assume the duality theorem, our task may be observed with some
interests.
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**) Tokyo Institute of Technology.
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2. Let dE’ be the spectral measure acting on L2(X), which is
defined by the characteristic functions Cs, of Boret sets S’ in X.
Denote

U’(g)-fz(g)dE’(z).

Then U’(g) is a strongly continuous unitary representation of G. It
is easy to see that U’(g) is a multiplication operator over L-(X) by
a Borel measurable function F(Z), and hence U’(gh)--U’(g)U’(h) and
the strong continuity imply F(z)=I(g), i.e. the inner product (U’(g), for every , ]eL2(X). Denote the regular repre-

seatation of X by V’(Z). Then the pair U’(g) and V’(Z)satisfies the
commutation relation (4), because E’(S’)V’(Z)-- V’(z)E’(z-S’). Moreover
such a pair U’(g) and V’(Z) is irreducible. Indeed, let a be a bounded
operator on L2(X) commuting with all U’(g) and V’(Z). Since the yon

Neumann algebra A generated by U’(g), ge G, is maximally abelian, a
belongs to A and a multiplication operator by a Borel measurable
function a(z). While

a(z -1 Zl)(Z -1 Zl)--V’(z)(a)(Z1)----a(V’(z))(Zl)----a(zl)(Z -1 Z1)
implies that a(z-Z)--a(z) for all Z and a.e. zeX. Hence a is a
constant operator.

Since U’ and V’ satisfy (4), it is possible to apply Mackey-Loomis’
Theorem on U’ and V’, that is, there exists a unitary transforma-
tion T mapping L(G) onto L(X) such that
( 5 ) U’(g) T-- TU(g) for every ge G
and
( 6 ) V’(Z) T-- TV(z) for every ;( X.
Let F be the transformation mapping L(G) into the space of continu-
ous functions on X, defined by the following:

(F)(Z) f’z(g)e(g)dg for every pe LI(G).

Then it will be proved the followings:

LEMMA 1. T(.@)--(Tp)(F) for every , LI(G)L2(G), where. denotes the convolution of and @.1)
Proof. For a.e. z eX,

T(,@)() TEf )(g)dgl(z)- TElU(g)( )@(g)dgl(z),
where the integration is L-valued Bochner integral and T is bounded,
and hence the integration commutes with the operator T, therefore

1) For any bounded linear transformation L from L(G) into or onto L(X), U’(g)L
=LU(g) if and only if L(, )=(L)(F). Indeed, the ’only if’ part is proved by the
same way of the proof of Lemma 1, and the ’if’ part may be proved by using of the
approximate identity {e} and by similar method of the proof of Lemma 2. We omit it.
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fz(a)(Tf)(Z)@(g)dg-- (Tf)(z)fz(g)@(g)dg
(T)(F@)(Z).

LEMMA 2. There exists a measurable function a(Z) on X such
that (T)(Z)--a(z)(F)(Z), a.e. in X, for every eL(G)L(G).

Proof. Let {e.} an approximate identity in L(G) generated
by a complete neighurhood system {N.} of the unit of G. Then
e. longs to L(G)L(G). For such e., e., in both L- and L-means, therefore, T(e., )oT in L-mean. While by Lemma 1, T(e.,
)--(Te.)(F). Since {F; eL(G)_L(G)} is uniformly dense in C(X),
where C(X) is the space of all continuous functions on X vanishing
at infinite, lim. Te. exists (--a, say) and is clearly measurable. There-
fore (Te.)(F)(Z)a(z)(F)(Z)--(T)(Z) a.e. in X.
LEA 3. The function a(z) equals to a non-zero constant a0,

say ao ]-- 1/c, a.e. in X.
Proof. By (6) and Lemma 2, for any eL(G)L(G)

(TV(z)?)(Z,)--(V’(z)T)(Z) V’(z)(a F)(Z) a(z- Z)(F)(Z-’
While, (TV(z))(Z)--a(Z,)" F(V(z))(Z,)--a(Z,)(F)(Z- Z,). Hence
=constant a.e. in X.

3. Summing up Lemmas 1, 2 and 3, one has immediately
THE PLANCHEREL THEOREM. Denote the Fourier transformation

by which is defined such that

Then, for every , L(G)
(7)

and

(8) f(9)(;)()(X)d; f9(g)(g)dg.

In this Theorem, the formula (8) follows immediately from (7).
Let -be the inverse of if’, then - is unitary transformation
from L(X) onto L(G), and we prove the following

THE FOURIER INVERSION FORMULA.

a.e. geG for every eLI(X)L2(X).
Proof. For every eL(G)L(G), the inner product

(-1, @)_(-1, @)_(, @)_fl(Z)(@)(z)dz
d

2) For the function e L2(G) not belonging to LI(G), the transformation is defined
by the L-approximation.
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X X

(by Pubini Theorem)

Therefore (ff- )(g)=f(g)e()d a.e. g G.

Finally, it will remarked, that
that is,

(f)(2)= 4_=1
Indeed, let Ca(t) the characteristic function of the interval [--1, 1],
then by mma 2
Since T is unitary,

2= Cx(t) [2dt- I(TC,)(a) 2d-- c2,

i.e.
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