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1. Introduction. In the present continuation of his recent
papers [1] to [5] the author proceeds to establish two noteworthy
properties of the curvature of continuous parametric curves. They
generalize certain well-known results in classical differential geometry
of curves.

Let R™ be a Euclidean space of any dimension m=2 throughout
this note. Let us consider in this space a parametric curve ¢(t) of
the class C? defined and regular on the real line B. In other words,
we suppose that the coordinate-functions z,(t) of ¢ are all twice
continuously differentiable (¢=1,2,---,m) and that, furthermore, the
derivative of ¢, given by ¢'(t)=<{xi(t),- - -, z,(t)) for all ¢, never van-
ishes. Let s(t) denote a length-function for the curve ¢, so that s(t)
increases strictly and for every closed interval [a,b] the arc-length
of ¢ over [a,b] is equal to the increment s(b)—s(a). We write further
7(t) for the spheric representation of ¢, given by r(t)=|¢'(t)| '¢'(t)
for each ¢t. Then everybody knows that the curvature of ¢ at any
point t of R is expressed by the absolute value of the s-derivative
(s)7’(t) of the curve 7. Indeed this is often adopted as the definition
of curvature.

Now the extension of this statement to curves more general than
¢ considered above is the concern of our first theorem (§3). It should
be noted that in our paper [4] we defined curvature in a way different
from the aforesaid standard definition and that therefore the pro-
pounded extension is not a definition but a theorem requiring a
regular proof. As for our second theorem (§5), we must omit the
explanation of its origin owing to space limitation.

2. Direction-curves. Consider in R™ a continuous light curve
o(t)=<{x,(t),  + -, 2,(t)), defined on R and locally straightenable (see
[4]82). Then ¢ is necessarily locally rectifiable by [1]§64. As in
[4], the length and bend of ¢ over an interval I (of any type) will
be denoted by S(I) and £(I) respectively, and the induced measure-
length and measure-bend by S, and 2, respectively. Further, we
shall continue using the symbol p(t) of [4] to denote the curvature
(in our sense) of ¢ at a point ¢t of R. We remark in passing that,
as easily seen, the definition of bend adopted in [4] is compatible
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with that of [1]828. Since ¢ is light, there exists at least one
direction-curve for ¢ (in the sense of [1]8§44) defined on the whole
real line. We denote by 7(t) any fixed one of them, and by 4 and
Ay respectively its spheric length and spheric measure-length (vide
[4]§5).

LEMMA. The direction-curve 7 is locally rectifiable and spheri-
cally interjacent (cf. [6]82). Moreover QI)=A(T) for every endless
interval I, so that the two outer measures Q, and A, are identical.

PrROOF. We shall write ¢®(t) and ¢%(t) for the right-hand and
left-hand spheric representations of ¢ respectively as in [1]§77, their
existence being ensured by [1]8§80. Denoting by T the set of the
points ¢ satisfying ¢%(t)3=¢"(t), we find immediately 2(I)=¢"(p)< ¢*(p)
for every point »p of T and every endless interval I containing p.
Consequently £2,({»}) never vanishes for peT, and so T must be a
countable set. On the other hand, the curves 7 and ¢® are both locally
rectifiable on account of [1]§45. The proposition of [1]§83 then
shows that r(t+)=¢%(t) and y(t—)=¢%(t) for all ¢ of R and that ¢*
is right-hand continuous.

In order to ascertain now the spheric interjacency of the curve
7, suppose that r(c) coincides with neither of y(c—) and r(c+), where
¢ is a fixed point of R. By definition of y(c) we can choose an in-
finite sequence J,,J,,--- of closed intervals containing ¢ and tending
to ¢, such that ¢(J,)30 for all n=1,2,--- and such that ¢(J,)o7(c)—>0
as n—>o. Writing J,=[a,,b,] for each n, we find the existence of
a natural number %, such that ¢(a,)==¢(c) and ¢(b,)3¢(c) for every n
exceeding »’. In fact, if for instance ¢(a,)=¢(c) were true for all n
belonging to some infinite set N of natural numbers, we should have
ob,)—oe(c)=¢(J,) for meN. Then, as n tends to infinity in the set
N, the equality

{o(b,)—e(e)}or(c)=9(J.) o 1(c)

would at once yield the contradiction r(c+)o7(c)=¢%(c)or(c)=0. This
being so, write for short P,=[a,,c] and @Q,=[c,b,], where and sub-
sequently we suppose n>mn,. Making n—>c in the triangular equality
(see [1]§23)

P(P,) 0 0(Q.)=¢(P,) 0 o(J,)+¢(Qn) 0 (),
we get at once the following relation which shows 7 spherically inter-
jacent:

rc—=)or(ct+)=r(c—)or(c)+r(c+)or(c).

Return now to the set T considered at the beginning. The last
equation implies that y(t)=7r(t+)=¢"%(t) for every ¢ not belonging to
T. Arguing as in §§84-85 of [1] we then see without difficulty that,
for every endless interval I, the spheric length of the curve ¢® over
I equals 4(I). This combined with [1]§96 leads to 2(I)=A4(I), com-
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pleting the proof.

3. First theorem. With the help of the above lemma we go
on now to drive the following result which is the first of our two
theorems:

THEOREM. Given ¢ and 7 as im the foregoing section, with S
and Q for the length and bend of ¢ respectively, write F(J)=r(a)<r(b)
Jor closed intervals J=[a,b] and denote by K the Borel set of the
points t of R for which the curvature p(t) of ¢ equals (S)F(t), i.e.
the interior S-derivative of F at t. Then we have

Sy(R—K)=92,(R—K)=0.

ProoF. As the theorem of [4]87 asserts, p(f) is synonymous
with (S,)Q%(t), where 2, coincides identically with A4, in conformity
with the above lemma. Further S,(J)=S(J) for all closed intervals
J in virtue of continuity of ¢. Accordingly, in view of local recti-
fiability and spheric interjacency of y (see the lemma), the set K of
the assertion coincides with the set N considered in the theorem of
[6]186, provided that we take there for the additive set-function g
the restriction of S, to bounded Borel sets. But # then coincides
with S, and so our theorem is equivalent to the relation (5) of the
theorem quoted just now.

4. Second order approximation to an indefinite integral. As
in our previous papers, the letter p¢ will always stand for a non-
negative additive set-function. Let ¢ be a given point of R and,
for the moment, let us denote by J any closed interval for which ¢
is an extremity. We shall say that a finite interval-function P, de-
fined for all closed intervals, admits second order approximation
around the point ¢ with respect to g, when the following condition is
fulfilled: there exist a pair A, B of finite real coefficients and a
finite real function §(J) of the interval J in such a manner that
HJ)—->0 as J tends to ¢ and that further, for every J,

P(J)=Apu(J)+ BT )X (T )+ )e*(J),

where &(J) means 1 or —1 according as ¢ is the left-hand or right-
hand extremity of J. It should be observed that, as a matter of
course, the coefficients A, B and the funection 9(J) may depend not
only on ¢ and P, but also on the point ¢. We can also express the
remainder term 9(J)¢*(J) by the Landau notation o[¢*J)]. Of course
the above concept will mostly be used when g is continuous at ¢,
that is, when #({c}) vanishes.

Consider now on R 3 finite point-function f(¢) which is B-measur-
able and locally integrable (¢#). The latter condition means that the
function is integrable (¢) over every finite interval, or what amounts
to the same thing, over every bounded Borel set. The indefinite y-
integral of f(t) over closed intervals I will be denoted by &(I) for
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simplicity.

LEMMA. Given g, f(t), and &(I) as above, suppose that p 1is
continuous, t.e. that u({t})=0 for all pointst. Then @ admits second
order approximation around a point ¢ with respect to p provided
that f(t) is p-derivable at ¢ and that p is nonlacunar at ¢ (see [2]
§5). Written at full length the approximation reads, with the same
meaning for &(J) as in the above,

O(J)=f()(J)+2 () f' () (T ) (T ) o[ #*(J)].

REMARK. Although irrelevant to the purpose of the present note,
it would be interesting to investigate what will become of the above
assertion when continuity of g is dropped. Again, we shall only make
use of a very special case of this lemma later (§5); i.e. the case in
which g is nowhere lacunar and consequently the following proof can
be much simplified.

PrROOF. Let us keep the point ¢ fixed. Since p is continuous we
can choose a finite point-function s(¢) such that s(c)=0 and that s(I)
=p(I) for all closed intervals I. Then s(t) is continuous and non-
decreasing, and the theorem on p. 100 of Saks [7] shows that u(E)
=|s[E]| for every bounded Borel set E. The image s[R] of the real
line is evidently an interval, for which we shall write H. An interval
(finite or infinite) will be called lacunar for the nonce, if it is the
inverse image under the mapping s of some point of H. Clearly
s™}(u) is either a one-point set or else a lacunar interval, for each
point u of H. Without loss of generality we may suppose that all
lacunar intervals are finite and that, therefore, H is an endless inter-
val. The letter J will stand as above for any closed interval of which
¢ is an endpoint. Then the image s[J], which we shall denote by
K for brevity, must always be a closed interval which has zero for
one of its endpoints.

It is readily seen that, in order to prove the lemma, we may
assume f(t) constant on each lacunar interval. We then can define
on H a point-function F'(w) uniquely, setting F(uw)=f(t) for ueH,
where ¢ is any point of R satisfying s(t)=w. This function F fulfils
the evident relation F'(0)=(¢)f’(c). Now, according to a famous
theorem belonging to the theory of analytic sets (vide Kuratowski
[6], p. 261), every biunique image of a Borel set of real numbers
under a continuous mapping of R into itself is likewise a Borel set.
It follows easily that F'(u) is not only B-measurable on H, but also
integrable over each closed interval A in H with respect to Lebesgue
measure. The integral which thus arises will be written ¥(A) for
short, and every ¥(K) is at once found to coincide with @(J) on
account of the relation K=s[J] (see above).

This being so, let us confine ourselves only to such J that &(J)=1,
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as we plainly may by symmetry. In virtue of the results proved
already the formula of our lemma then transforms at once into
U(K)=F(0)|K|+2*F'(0)| K |*+0o(| K I*).
But this is a direct consequence of the evident relation
Fu)=F(0)+F'(0)u+o(w) (ue H, u—0).

5. Second theorem. We shall resume the consideration of the
curve ¢ of §2, retaining the notations S(I), 2(I), Sy, 24, p(t). Given
any point u of R, let J, and J, signify, throughout this section, an
arbitrary pair of closed intervals of which % is the right-hand and
the left-hand endpoint respectively. Writing J=J,—J, we hence-
forward suppose J so short that neither of the increments ¢(J,) and
¢(J;) vanishes. This is feasible on account of the proposition of
[1]880. We regard the angle ¢(J,)¢ ¢(J;) between the two increments
as a function of the interval J and denote it by G(J).

THEOREM. Let M denote the set of all the points w at which the
curvature p(u) of the curve ¢ and the interior S-derivative (S)G‘(u)
of the function G(J) exist both (as finite or infinite values) and fulfil
the relation p(u)=2(S)G'(w). Then we have S, (R—M)=0.

REMARK. At present we do not know whether the counterpart
relation Q,(R—M)=0 for the measure-bend is also true. Neither is
it clear whether M is a Borel set.

PRrROOF. Let 7(t) be a direction-curve for ¢ as in §2, with 4 and
Ay for the spheric length and spheric measure-length determined by
7 respectively. Then r(t) is B-measurable, i.e. its coordinate-functions
are so, since it is locally rectifiable in accordance with the lemma of
§2. Further Q2,=4, identically by the same lemma. Noting that
S and S, coincide for closed intervals in virtue of continuity of ¢,
we deduce from Tonelli’s theorem of [3]84 that the S-derivative
(S)¢'(t) exists and equals 7(t) for S,-almost every point . On the
other hand, by change of parameter from ¢ to a length-function s(t)
for the curve ¢ (so that S,=s* identically), we infer easily from the
first half of Theorem (7.8) on p. 121 of Saks [7] that, for every
closed interval @, the increment ¢(Q) equals the S,-integral of (S)¢'(¢)
over @ (cf. also the theorem on p. 100 of Saks [7]). It follows that
¢(Q) is the S,-integral of r(t) over Q.

Consider now the Borel set D of all the points ¢ at which 7(z)
is S-derivable. Given any point u of D, the lemma of the preceding
section shows, in view of what has already been proved, that

o(J)IS(T)=r(w)+(—1)27:S(J))-(S)'(w) +o[S(J)]  (¢=1,2)
as the interval J=J,—.J, tends to the point u. From this we derive
readily

G(J)=2"18(J) | (S)r'(u) |[+o[S(J)],
since the two vectors y(u) and (S)y(w) are orthogonal, The last re-
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lation plainly implies that (S)G‘(uw) exists and equals 27! |(S)7'(w)|.

Needless to say, the curve 7(f) is continuous at every point of
D. Hence its measure-length coincides with 4, for any Borel set X
(bounded or not) in D on account of the lemma of [56]§5. It follows
from the Supplement of [3]84 and the decomposition theorem of
[2]§8 that

4.30= [1(S)'(®) | dSu)=A(AX)+ [ (S)4(8)dS.(t)

for such X, where A denotes the Borel set of the points ¢ of D for
which (S)4%(t) becomes + . Replacing X by A we readily get 4,(A)
=0 since S,(4)=0 by Lebesgue’s theorem of [2]8§4. Consequently the
above two integrals over X must coincide. It is then easy to see
that S,(D—D,)=0, where D, stands for the Borel set of the points
t of D at which (S)4%(t) exists and equals | (S)7(?)].

Let us turn now to the set M of the assertion. In view of the
identity 92,=4,, remarked at the beginning, and of the eguation
| (S)7’'(w) |=2(S)G*(u), obtained above for ueD, we find by the theorem
of [4]87 that M contains D, so that D—MCD—D, It follows
that S,(D—M)=0. But S,(R—D)=0 in virtue of the lemma of
[8]183. We thus derive finally

S«(BR—M)=<S(R—D)+S«(D—M)=0,
which completes the proof of the theorem.
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