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The subject to be discussed is, from the point of view of
SchrSdinger theory, finding suitable measures for loss of definition
of a state. From the point of view of hi|bert space operator theory,
it is simply finding suitable measures for the "extent of non-
commutativity" of an operator D with the algebra generated by a
discrete family of projections {E}. From the latter point of view,
the interest of the paper is concentrated in 2.

In addition to the conspicuous lack of generality of the hypo-
theses, the statements proved here are incomplete in other respects.
Suggestions for future research are accordingly made at several points.

1. States (Segal’s approach) and entropy. In the usual
SchriSdinger theory, one may consider every state of a system to be
the set of expectation values it assigns to observables: any state
is a certain functional. The (vector) pure state corresponding to the
wave-vector q is the functional mapping every bounded hermitian
A’observable’to the number (A, ); the mixed state correspond-
ing to probabilities respectively of wave-vectors (a:>0, a=l),
maps A to 3?,2(A, ). The phases of and being irrelevant
here, one may prefer to associate to the pure state, not the vector, but instead the operator P of projection on the subspace
to the mixed state then, will be associated the operator
where P is the projection on . The functional then takes A to
tr (PA), respectively tr (DA). It is a simple and well-known, but
important, fact that there is no loss of generality in assuming here
that the P are orthogonal--D is after all simply an arbitrary posi-
tive (semi-) definite operator with trace 1.

Now I propose to seek a definition of entropy-increase which
will measure the extent to which a state is made "more mixed" by
being subjected to a measurement [113. If the dials of the measuring
instrument are read, the "packet is reduced", and entropy should
decrease. If the dials are not read, the measurement replaces any

*) Presented in preliminary form at Stevens Institute of Technology, 21 March
1961, and in toto at the University of Chicago, 16 August 1961. Theorems 2 and 3 were
mentioned as new in the former talk because I had not learned of the then unpublished
paper of Nakamura and Umegaki [8].
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pure state by a mixture of alternative pure states of unrelated
phase, so some predictability from knowledge antedating the measure-
ment is lost, and entropy should increase. The point of view taken
here is that the quantity associated with a measurement, to preserve
analogy to the entropy of a chance event, must refer to the second
interpretationthe dials unread. Subsequent reading of the dials is
analogous to determining the outcome of the event.

A measurement is characterized by a set of projections E, _._E
1. It replaces any @ by zs--Es@/II E@ II, with probability II Es II -.

Let us consider, instead of the functional of evaluating every A in
the state @, the following functional: one first subjects @ to the
measurement {E} and then evaluates the observable A. This func-
tional maps A to the number
=tr (AEDE). This means that, independent of A, the measure-
ment has replaced D by ,EDE: its effect is a ’pinching’ 4_ on
the state operators. The first desideratum for a measure of entropy
is, then, that H(EDE)H(D) always hold. Call this condition A.

But in addition it may happen that one decides to ignore available
information by averaging over some variable. If D commutes with
the corresponding observable, this corresponds to replacing a direct
sum D@D...D (which is a direct summand of D) by the direct
sum of k copies of k-(D-D2+... +D), because D enters linearly
in the expression tr(DA) for the value of the functional. This
makes sense provided the k subspaces are isomorphic in a natural
way: i.e., differ only in the eigenvalue of the variable being averaged
over. But then it is natural to say that what one has done is to
average (over all permutations) the operators that differ from D
only in the permutation of these subspaces. And it is natural then
to require of the entropy that it be if anything increased by the
process: H(D) must be a concave function of D. Call this condition B.

Finally, if some sense can be given to the equation H(_D(R)D)
--H(D)WH(D2), it should preferably also hold (condition C). Here
D and D. are states of different systems, and D(R)D. is a state of
the combined system such that no measurement involving variables
of only one subsystem can give information about the other. The
motivation for desiring this equation to hold is thereby plain.

2. Numerical.valued and operator.valued entropy. I.E. Segal
[10 proposed the definition tr h(D) for the entropy; here and in the
rest of the paper, h denotes the real continuous function on [0,
defined by h(t)----t logs (t>0). (This may fail to be finite even
though tr D=I, as simple examples show, but this is a relatively
insignificant drawback.) Segal proved that this entropy possesses
the property B of concavity [10, Theorem 1] and a property gener-
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alizing condition A [10, Theorem 2]. It also satisfies condition C,
as one verifies immediately.

What can we say about the uniqueness of h in Segal’s definition?
That is, if entropy is measured by tr f, for real function f, how
do the conditions of the previous section restrict f? Segal points
out that tr f is a concave function of operator argument if f is
merely any concave real function on [0,1_. I will give a proof,
since it is very simple, and neither Segal nor yon Neumann whom
he cites [11 published any. Any two bounded hermitian operators
possessing trace can be approximated uniformly by finite matrices,
the ranges of which are contained in a common larger finite-dimen-
sional subspace of (, so it is enough to prove concavity for n n
matrix arguments. Now tr f(A), for such A, may be regarded as
a real function of n real variables: tr f(A)-,f(a), the a being the
eigenvalues of A. As such, it is evidently concave. But this is
known [3J to imply that it is concave as a function of a matrix
argument.

Condition A is known to follow from condition B, cf. [4,6],
so will also be satisfied by functions from the wider class. This is
all that is required for the following:

THORE 1. If f is any concave real function, then trf satisfies
conditions A and B of 1.

Presumably, to impose the further condition C would essentially
characterize the function h. I do not know of any proof of this.
Compare 6, [7].

Nakamura and Umegaki [8] have pointed out that the first two
properties of the entropy proved by Segal are consequences of the
two theorems which follow.

TH:OREI 2. h is an operator-concave function on (0, o).
That is, for any self-adjoint A, B which spectrum (0, o), and

real 2 (0, 1),
( 1 ) h((1--)A+2B)(1--)h(A)+h(S).

This is easy using the criterion of Bendat and Sherman [1, Thin.
3.2J, which may also be found, in a somewhat novel presentation, in
a forthcoming paper [SJ: A function f is operator-convex in an
interval if and only if its first divided difference (=difference quo-
tient) is operator-monotone there with respect to either variable
separately. So for s, t (0, o) one must show that --h(s, t)
_--s log s--t log t is operator-monotone as a function of t. But this

follows from Loewner’s criterion [lJ, for it can clearly be extended
analytically from its interval of definition to the entire upper half
plane, and then maps the latter into itself.
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To be sure, the operators D which are in question always have
0 in their spectrum. However, this difficulty is easy to circumvent
also, for example by replacing A by A+>0 in (1), and B simi-
larly; when -0, each term converges uniformly to its counterpart
in 1), so the inequality is preserved.

I suggest that it would be of interest to find a direct elementary
proo of Theorem 2, not using the general Loewner theory; cf. 5,
8].

THEOREM 3. --h satisfies the Sherman condition.
The Sherman condition 2] for a real function f may be equiva-

lently phrased this way: for any pinching [E}, and any D as before,
f(.,EDE)_Ef(D)E; see 9], [,5J. It is known 2] to be equiva-
lent to operator-convexity.

Since, by Theorem 1, tr f satisfies conditions A and B for much
more general f than the particular function f:h, Segal’s theorems
seem a rather small reward to extract from these two theorems
about h. I propose to broaden the viewpoint a little, eliminating
the role of the trace, in a way that seems consistent with 1; see
also comment (4) of [10].

We know from Theorem 3 that h(,,EDE),Eh(D)E holds
identically. Accordingly, if we adopt the operator

H=H({E}, D) h(,EDE)--,Eh(D)E
as the measure of the entropy of the measurement [E] with respect
to the state D, we have the general property that H([E], D)0.

H is a "measure of loss of definition" as referred to in the
introduction and 1, and is the "operator-valued entropy" of the title.

This has used, of course, only the operator-concavity of h. Indeed
the following stronger statement holds:

THE0aEM 4. Let f be any function operator-concave on (0,
but not inear. Let F:f(EDE)--Ef(D)E (D, E as before).
Then F O, and the nullspace of F is the maxima subspace of
J( on which the restrictions of D and the E commute.

The part still awaiting proof is the last assertion. Any subspace
invariant under D, E, on which the restrictions of D and the
commute, has the same property with D replaced by f(D); so F

f(D)-- f(D)--0; this for general f.
In the other direction, prove first for the case f(t)----t. Let

E be one of the E such that ED--DE@O and FE--O, if possible.
By definition, FE--ED(1--E)DE=A*A, with A--(1--E)DE. Sup-
posing x such that (ED--DE)x4:0, there is no loss in supposing
x=Ex, when this becomes 0 @ (EDE--DE)x= --Ax, hence 0 :A*Ax
:FEx, a contradiction.

A similar elementary argument proves the result for the special
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case f(t)------t-; changing the independent variable as required, the
result is proved for f(t)=(r-t)-, r0. For linear f, of course, F0.

Any operator-concave function f can be expressed 1 as a sum
of positive multiples of the types so far considered (with a Stieltjes
integral with respect to r). This leads to a corresponding expression
of (F,)(zeal)as a sum of terms each of which is >0, all of
which therefore must be 0 for z e 7. But if any of these constituents
is non-linear, this implies (ED--DE)z=O.

This theorem shows that any of these F is a good "measure of
the extent to which D fails to commute with the Ez". For a
numerical measure, any aoF, with a a positive linear functional on
the hermitian operators, is suitable. Finally, by Theorem 1, the
choice of the trace for a allows wider choice of f, which then need
be merely concave in the usual sense.

(I remark that I. Schur used, as a measure of the failure of a
matrix C--((c)) to be diagonal, the quotient det C/Hc,, which is 1
if and only if C is diagonal, otherwise smaller. The negative of the
logarithm of this may be written as tr log (-,ECE)--tr log C, so fits
into the class described in Theorem 1, namely by choosing f(t)-log t;
but the logarithm function, though concave on (0, co), is not operator-
concave on any interval, so it would not be possible to use
a(log(ECE))--aE(log C)E in the same way for general .)

Again, it would be of interest to characterize h among operator-
concave f by making further natural requirements on aof beside
positivity of aoF. I do not know of any such characterization.
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