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143. FunctionabRepresentations o[ Normal Operators
in Hilbert Spaces and their App//cat/ons

By Sakuji INOUE
Faculty of Education, Kumamoto University

(Comm. by K. Kuru, ..., Dee. 12, 1961)

In this paper we have mainly two aims: one is to express a
normal operator in a Hilbert space by continuous linear functionals
associated with all elements of a complete orthonormal set in that
space and the other is to construct a normal operator with the
arbitrarily prescribed point spectrum. We can yet treat these two
problems at the same time.

Definition. Let p be the complex abstract Hilbert space which
is complete, separable, and infinite dimensional; let {},_-,.,s,... and
{@}=,,,... both be incomplete orthonormal infinite sets which have
no element in common and together form a complete orthonormal
set in ; let {a},__,,,... be an arbitrarily prescribed bounded sequence
in the complex plane; let (u) be an infinite unitary matrix with

[ull,j=1,2,3,...; let --u; let N be the operator defined

by

,]=1 =1

for every x) and an arbitrarily given constant c; let Lf be the
continuous linear functional associated with an arbitrary element f
in ); and let the operator N and the element Nx, defined above, be
denoted symbolically by

( 1 ) N:]2p(R)L,+
----1 /----1

and

=1 /=1

respectively. Then the sum of the two series in the right-hand side
of (1) is called "the functional-representation of the operator N".

Theorem 1. The functional-representation of the operator N
defined by (1) converges uniformly and N is a bounded normal
operator with the point spectrum [a} on ). In addition, putting
M:max (S, Icl -) where S:sup la], II NII--J.

Proof. Since, by hypotheses, a complete orthonormal set is
formed by the two sets {} and {@], we have for every
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where a,--L,,(x) and b/--L(x). On the other hand, since, by hy-
potheses, (u) is an infinite unitary matrix,

and

-],u,,,
1 ( ).

In addition, since Ilxll-.-,[a.[*T,lb,]< oo, there exists a posi-
=1

tive integer P such that, for an arbitrarily given

=P p=P

where M is the constant defined in the statement of the present
theorem.

In consequence, it is easily verified by direct computations that

u=P P=P

This result shows that

and hence that the functional-representation of N converges uni-
formly.

Similarly we have

for every xe. Hence N is a bounded orator.
Moreover, when M=S we can easily verify by putting

that ]] NIl equals , whereas when M= ]c ] we can show by setting

x=@. the validity of the relation ]N@, --]cl@.]] which implies
that ]]N][ is equal to .

Next we shall prove that N is normal.
Sin the identity operator I and any ye are expressible in the

forms

and

respectively, it is a matter of simple manipulations to show that

(Nx, y)-NR,L,,(x) L,,(y)+ c ,@Lo,(x),
=1 =1

=1 =1 1
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where L,(y) and L,(y) denote the conjugate complex numbers of
L,,(y) and L,(y) respectively.

We now put

=1

and consider the operator N defined by

.=1 =1

Then, by reasoning exactly like that applied to the series of
the right-hand side of (1), we can prove that the above functional-

representation of N converges uniformly. Moreover, in the same
manner as that used to show (3), we can show the validity of the
relation

( 4 ) (x, Ny)--2L(x)L(y)+c
=1 p=l =1

for every pair of x, ye.
From the relations (3) and (4), it follows at once that the

adjoint operator N* of N is given by N.
Furthermore,

=1 =1

and

u=l =1

u=l p=l

for every x. On the other hand, it is seen with the aid of the
previously described relations between the u’s that

=+,@L,(x).
Applying the last two results to the expansions of NN*x and

N*N, e have the relation N*:N*N holding for every ,
Thus N is a normal operator.
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It remains only to prove that the set [} is the point spectrum
of N. As a first step it is, however, clear that N--, for

=- 1, 2, 3,-- ..
We suppose, contrary to what we wish to prove, that N has

an eigenvalue a different from ,,- 1, 2, 3,. -, and denote by K
the eigenprojector of N corresponding to the eigenvalue a. Since
every eigenelement of N for a is orthogonal to all elements of {},
it is expressed by a linear combination of elements belonging to {@,}.
In consequence, we may and do denote an arbitrary eigenelement

f of N corresponding to the eigenvalue a by a,@,e{,}. Then,

by means of the relations Kf: and ((I--K), )--0, -1,2,3,. -,
and of Parseval’s formula, we have

Z Z
so that

a((I--K.)@, )--0, -- 1, 2, 3,....

Moreover, since the eigenspace of N corresponding to the eigenvalue
a is given by KO and hence since the final velations always hold for
all systems of the coefficients a as far as ]a]<, (I--K.)@ van-

ishes, that is, K.@--@ for every admissible p. As a result, we
find that

c@L(@)

where is uniquely determined by the condition @--@. This
result, however, is incompatible with the linear independence of
-1, 2, 3,- -, and hence the supposition concerning a must be rejected.

Thus the set {2.} gives the point spectrum of N, as we were to
prove.

With these results, the proof of the present theorem is complete.
Theorem 2. In Theorem 1, let 2--2 =2 e {2.} under the

condition that 2 be different from any 2. for =ml, roW2,---; let
K. be the eigenprojector corresponding to any eigenvalue 2. of N;
and let {K(z)} and be the complex spectral family and the contin-
uous spectrum of N respectively. Then

( 5 )

f( 6 )

Proof. By hypotheses, it follows at once that
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/’ (./=1, 2,...,m)
(j:m+l,m+2,...),

while K,=0 for g=l, 2, 3,-... Hence, by the use of the relation

,=-,(R)L.()+(R)L(x) holding for every $p, we have Kx
.=1 =1

=,(R)L,(z) which implies that (5) holds.
j=l

Since, as shown in Theorem 1, the point spectrum of N is given
by [2} itself,

N: f
where ..,’ denotes the sum for 11 distine eigenvalue ,. In the

same manner as above, we have therefore

fN =N +
for every . Comparing this equality with (2), we obtain the
desired relation (6).

The theorem has thus been proved.
Remark 1. Theorems 1 and . remain true, even if {} is

finite set (inclusive of he mulgiplieity of each of its distinct ele-
ments). In hat ease, f course, {o,} is elso e finite set. Moreover,
wih very smell modifieeions hee theorems are valid, even if one
of the orthonormel sets {o,} end {} is complete end henee the
other is empty.

Remark 2. If the (one-dimensional or two-dimensional) measure
of J is not zero, it can not be admitted that {@} is a finite set:
because the dimension of the orthogonal complement of the subspace
determined by all eigenelements of N is never finite in that case.

Remark 3. Both the {} and {*} are orthonormal sets orthogo-
nal to {,}.


