7. On Adjunction Spaces

By Mitsuru TSUDA

Department of Mathematics, Tokyo University of Education (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1962)

1. The Main Theorem. Let $\{C_{\alpha} \mid \alpha \in \Omega\}$ be a family of topological Let us consider a family of continuous maps $\{g_{\alpha} \mid \alpha \in \Omega\}$, where spaces. g_{α} is a continuous map defined on a *closed* subspace A_{α} of C_{α} into another topological space Y for each α . Then the disjoint union $W = Y \smile (\underset{\alpha \in \mathcal{Q}}{\smile} C_{\alpha})$ is a space with the topology defined as follows: a subset $V \subset W$ is open if and only if $V \subset Y$ is an open subset of Y and $V_{\frown}C_{\alpha}$ is an open subset of C_{α} for each α . Now we define in W an equivalence relation as follows: Two points $x \in C_{\alpha}$ and $y \in Y$ are equivalent if and only if $g_{\alpha}(x) = y$; two points $x \in C_{\alpha}$ and $y \in C_{\beta}$ are equivalent if and only if $g_{\alpha}(x) = g_{\beta}(y)$; each point is equivalent to itself. We take Z to be the quotient space of W with respect to this equivalence relation and $p: W \rightarrow Z$ the natural projection; that is, a subset B of Z is open if and only if $p^{-1}(B)$ is an open subset in W. We call this space Z the adjunction space obtained by adjoining $\{C_{\alpha}\}$ to Y by means of the continuous maps $\{g_{\alpha}: A_{\alpha} \rightarrow Y\}$.

The adjunction space is one of the most important spaces in the homotopy theory. (Cf. Hu [1].) We shall consider here a settheoretical property of this space. Namely we shall prove the following theorem.

Theorem 1. Let $\{C_{\alpha} \mid \alpha \in \Omega\}$ be a family of topological spaces, and let A_{α} be a closed subspace of C_{α} , g_{α} a closed continuous map defined on A_{α} into another topological space Y, for each $\alpha \in \Omega$. Then each of the following properties for Y and all C_{α} 's, implies the same property for the adjunction space Z, obtained by adjoining $\{C_{\alpha}\}$ to Y by means of the continuous maps $\{g_{\alpha}: A_{\alpha} \to Y\}$:

- (1) normality, (2) complete normality,
- (3) perfect normality, (4) collectionwise normality,
- (5) m-paracompactness and normality,

where m is any infinite cardinal number.

Here a topological space is called \mathfrak{m} -paracompact if any open covering of power $\leq \mathfrak{m}$ admits a locally finite open refinement. This notion is due to K. Morita [3].

In his lecture on the obstruction theory of CW-complexes [4], G. W. Whitehead has introduced the notion of relative CW-complexes. (For the definition, see §3 below.) As an application of Theorem 1, we shall establish the following theorem. **Theorem 2.** Any relative CW-complex (X, Y) has one of the following properties if and only if Y has the same property:

(1) normality, (2) complete normality,

(3) perfect normality, (4) collectionwise normality,

(5) m-paracompactness and normality,

where m is any infinite cardinal number.

In particular, any CW-complex ([4]) is a paracompact and normal space. (Cf. K. Morita [2].)

2. Proof of Theorem 1. Lemma 1. If we put $g'_{\alpha} = p | C_{\alpha} : C_{\alpha} \rightarrow Z$ (i.e. the restriction of the continuous map p to C_{α}) for each $\alpha \in \Omega$, and put $g' = p | Y : Y \rightarrow Z$, then g' and each g'_{α} are closed continuous maps respectively.

Proof. It is obvious that g' is a closed continuous map. To prove that g'_{α} is a closed continuous map, it is sufficient to show that, for any closed subset A of C_{α} , $p^{-1}(g'_{\alpha}(A))$ is a closed subset of W. Since g_{α} is a closed continuous map and $p^{-1}(g'_{\alpha}(A)) \cap Y = g_{\alpha}(A \cap A_{\alpha})$, $p^{-1}(g'_{\alpha}(A)) \cap Y$ is a closed subset of Y. Since $p^{-1}(g'_{\alpha}(A)) \cap C_{\alpha} = A \cap g_{\alpha}^{-1}$ $(g_{\alpha}(A \cap A_{\alpha})), p^{-1}(g'_{\alpha}(A)) \cap C_{\alpha}$ is a closed subset of C_{α} . Finally, for any $C_{\beta}, \beta \neq \alpha, p^{-1}(g'_{\alpha}(A)) \cap C_{\beta} = g_{\beta}^{-1}(g_{\alpha}(A \cap A_{\alpha}))$, and since g_{α} is a closed continuous map, $p^{-1}(g'_{\alpha}(A)) \cap C_{\beta}$ is a closed subset of C_{β} . Therefore $p^{-1}(g'_{\alpha}(A))$ is a closed subset of W, and our lemma is established.

K. Morita has introduced the following notion in [2] (also in [3]). Let X be a topological space and $\{A_{\alpha} \mid \alpha \in \Omega\}$ be a closed covering of X. Then X is said to have the weak topology with respect to $\{A_{\alpha}\}$, if the union of any subcollection $\{A_{\beta} \mid \beta \in \Lambda\}$ of $\{A_{\alpha}\}$ is closed in X, and any subset of $\underset{\beta \in A}{\leftarrow} A_{\beta}$, whose intersection with each A_{β} is open relative to the subspace topology of A_{β} , is necessarily open in the subspace $\underset{\beta \in A}{\leftarrow} A_{\beta}$.

Lemma 2. The adjunction space Z has the weak topology with respect to the closed covering $\{g'_{\alpha}(C_{\alpha}) \subseteq g'(Y) \mid \alpha \in \Omega\}$.

Proof. By Lemma 1, g' and each g'_{α} are closed continuous maps, and hence $\{g'_{\alpha}(C_{\alpha}) \subseteq g'(Y) \mid \alpha \in \Omega\}$ is a closed covering of Z.

We must show that, for any subset Λ of Ω , any subset A of $\bigcup_{\beta \in A} \{g'_{\beta}(C_{\beta}) \smile g'(Y)\}$, whose intersection with $g'_{\beta}(C_{\beta}) \smile g'(Y)$ is a closed subset of $g'_{\beta}(C_{\beta}) \smile g'(Y)$, is necessarily a closed subset of Z.

Since $A_{\frown}(g'_{\beta}(C_{\beta}) \cup g'(Y))$ is closed by assumption and $A_{\frown}g'(Y) = [A_{\frown}(g'_{\beta}(C_{\beta}) \cup g'(Y))]_{\frown}g'(Y)$, $A_{\frown}g'(Y)$ is closed. Hence $p^{-1}(A)_{\frown}Y$ is a closed subset of Y.

For any C_{β} , $\beta \in \Lambda$, $A_{\frown}(g'_{\beta}(C_{\beta}) \smile g'(Y))$ is closed by assumption and $A_{\frown}g'_{\beta}(C_{\beta}) = [A_{\frown}(g'_{\beta}(C_{\beta}) \smile g'(Y))]_{\frown}g'_{\beta}(C_{\beta})$, and so $A_{\frown}g'_{\beta}(C_{\beta})$ is closed. Hence $p^{-1}(A)_{\frown}C_{\beta}$, $\beta \in \Lambda$, is a closed subset of C_{β} .

Finally, for any C_r , $\gamma \notin \Lambda$, $p^{-1}(A) \frown C_r = g'_r^{-1}(A \frown g'_r(C_r))$, and since $(A \frown g'_r(C_r)) \boxdot g'_r(A_r) \boxdot g'(Y)$, we have $A \frown g'_r(C_r) = (A \frown g'_r(C_r)) \frown g'_r(A_r)$

 $=(A \frown g'_r(A_r)) \frown g'(Y) = g'_r(A_r) \frown [A \frown (g'(Y) \lor g'_\beta(C_\beta))] \text{ and hence } A \frown g'_r(C_r)$ is closed. Hence $p^{-1}(A) \frown C_r$, $\gamma \notin A$, is a closed subset of C_r .

Therefore $p^{-1}(A)$ is a closed subset of W, and so A is a closed subset of Z by the definition. Our lemma is thus established.

Since each of the properties (1)-(5) in Theorem 1 is preserved by a closed continuous map, each subspace $g'_{\alpha}(C_{\alpha}) \subset g'(Y)$, $\alpha \in \Omega$, has the same property as C_{α} and Y. Hence Theorem 1 is obtained by Lemma 2 and the following theorem due to K. Morita [3].

Theorem. If a topological space X has the weak topology with respect to a closed covering $\{A_{\alpha}\}$ such that each set A_{α} is m-paracompact and normal, then X is m-paracompact and normal.

3. Relative CW-complexes. We now recall the notion of relative CW-complexes introduced by G. W. Whitehead.

Let X be a Hausdorff space, and Y its closed subspace. If a family of closed subsets $\{E_{\alpha}^{n} | \alpha \in J_{n}, n=0,1,2,\cdots\}$ satisfies the following conditions, then the family $\{E_{\alpha}^{n}\}$ is said to be a *CW*-decomposition of (X, Y), and (X, Y) is called a *relative CW*-complex: If we put $X^{n} = Y \smile (\underset{m \leq n}{\smile} E_{\alpha}^{m}) \quad (n \geq 0), \quad X^{-1} = Y, \quad \dot{E}_{\alpha}^{n} = E_{\alpha}^{n} \frown X^{n-1} \quad (n \geq 0),$ Int $E_{\alpha}^{n} = E_{\alpha}^{n} \frown \dot{E}_{\alpha}^{m} \quad (n \geq 0)$, then

1) {Int $E_{\alpha}^{n} \mid \alpha \in J_{n}, n = 0, 1, 2, \dots$ } is a family of mutually disjoint sets;

2) $X-Y = \bigvee_{n} \bigcup_{\alpha \in J_n} \text{Int } E_{\alpha}^n$;

3) for each E_{α}^{n} , there exists a continuous map $f_{\alpha}^{n}:(I^{n},\partial I^{n})$ $\rightarrow (E_{\alpha}^{n},\dot{E}_{\alpha}^{n})$ such that

i) $f_{\alpha}^{n}(I^{n}) = E_{\alpha}^{n}$,

ii) f_{α}^{n} , restricted to Int I^{n} , is a homeomorphism,

where I^n , ∂I^n , Int I^n denote the *n*-cube, its usual boundary, its usual interior, respectively;

4) each \dot{E}^n_{α} intersects with only a finite number of the members of the family {Int $E^q_{\beta} \mid \beta \in J_{\alpha}$, $q=0,1,2,\cdots$ };

5) a subset A of X is closed if and only if $A \cap Y$ is a closed subset of Y and $A \cap E_{\alpha}^{n}$ is a closed subset of E_{α}^{n} for each E_{α}^{n} .

We recall also the notion of inductive limit spaces. Let $Y_1 \subset Y_2$ $\subset \cdots \subset Y_n \cdots$ be a sequence of topological spaces. Then $Y = \bigvee_n Y_n$ is called the *inductive limit space* of this sequence $\{Y_n\}$ if the topology of Y is defined as follows: a subset V of Y is open if and only if $V \subset Y_n$ is an open subset of Y_n for each n.

Lemma 3. Let (X, Y) be a relative CW-complex. Then, each subspace X^n , $n=1,2,\cdots$, is the adjunction space obtained by adjoining $\{I^n_{\alpha} \mid \alpha \in J_n\}$ to X^{n-1} by means of the continuous maps $\{f^n_{\alpha} \mid \partial I^n : \partial I^n_{\alpha} \rightarrow X^{n-1}\}$, where each I^n_{α} is a copy of I^n . Moreover, the space X is the inductive limit space of the sequence $Y \subset X^0 \subset X^1 \subset \cdots \subset X^n \subset \cdots$. Proof is omitted.

Proof of Theorem 2. By Lemma 3 and Theorem 1, each subspace X^n has the same property as the subspace Y. Then, the inductive limit space X also has the same property by the following theorem due to K. Morita [3].

Theorem. If a topological space X has a countable closed covering $\{A_i | i=1,2,\cdots\}$ such that any subset C for which $C \cap A_i$ is closed for each i is necessarily closed in X, and if each A_i is m-paracompact and normal, then X is m-paracompact and normal.

Thus the "if" part is established.

As Y is a closed subspace of X, the "only if" part is obvious, and hereby Theorem 2 is established.

References

- [1] S. T. Hu: Homotopy Theory, Academic Press, New York (1959).
- [2] K. Morita: On spaces having the weak topology with respect to closed coverings.
 I, II, Proc. Japan Acad., 29, 537-543 (1953); 30, 711-717 (1954).
- [3] K. Morita: Paracompactness and product spaces, Fund. Math., 50, 223-236 (1961).
- [4] G. W. Whitehead: Homotopy theory, Lecture notes at the Massachusetts Institute of Technology (1953).