143. Some Characterizations of m-paracompact Spaces. II

By Tadashi ISHII

Utsunomiya College of Technology (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1962)

In this paper we study some characterizations of m-paracompact and normal spaces in the form of the selection theorems.¹⁾ Let X and Y be topological spaces. 2^{Y} will denote the family of non-empty subsets of Y. A function from a subset of X to 2^{Y} is called a *carrier*. If $\varphi: X \rightarrow 2^{Y}$, then a selection for φ is a continuous function $f: X \rightarrow Y$ such that $f(x) \in \varphi(x)$ for every $x \in X$. A carrier $\varphi: X \rightarrow 2^{Y}$ is *lower semi-continuous* if, whenever $V \subset Y$ is open in Y, $\{x \in X | \varphi(x) \cap V \neq \phi\}$ is open in X, where ϕ denotes the null set. For a Banach space or a complete metric space Y, we shall consider the following families of sets.

$$\begin{split} &A(Y) = \{S \in 2^{Y} | S \text{ is closed}\}, \\ &K(Y) = \{S \in 2^{Y} | S \text{ is convex}\}, \\ &F(Y) = \{S \in K(Y) | S \text{ is closed}\}, \\ &C(Y) = \{S \in F(Y) | S \text{ is compact or } S = Y\}. \end{split}$$

The following theorem seems to be interesting for us in the point of view that Michael's results [3, Theorems 3.1'' and 3.2''], which were separately stated and proved for paracompact spaces and countably paracompact spaces, are unified.

Theorem 1. The following properties of a T_1 -space are equivalent.

(a) X is m-paracompact and normal.

(b) If Y is a Banach space which has an open base of power $\leq m$, then every lower semi-continuous carrier $\varphi: X \rightarrow F(Y)$ admits a selection.

To prove this theorem, the following lemmas and Theorem 2 in the previous paper [2] are useful.

Lemma 1. If X is m-paracompact and normal, Y a normed linear space with an open base of power $\leq m, \varphi: X \rightarrow K(Y)$ a lower semi-continuous carrier, and if V is a convex neighborhood of the origin of Y, then there exists a continuous function $f: X \rightarrow Y$ such that $f(x) \in \varphi(x) + V$ for every x in X.

Proof. Since $\{y-V\}_{y \in \mathbf{r}}$ is an open covering of Y and Y has an open base with power $\leq \mathfrak{m}$, there exists a locally finite open refinement $\{W_{\lambda} | \lambda \in \Lambda\}$ of $\{y-V\}_{y \in \mathbf{r}}$ with $|\Lambda| \leq \mathfrak{m}$. Let $U_{\lambda} = \{x \in X | \varphi(x) \cap W_{\lambda}\}$

¹⁾ Cf. E. Michael [3].

[Vol. 38,

 $\pm \phi$ }. Then, by the definition of a lower semi-continuous carrier, U_{λ} is open in X, and clearly $\mathfrak{ll} = \{U_{\lambda} | \lambda \in \Lambda\}$ is an open covering of X. Since X is m-paracompact and normal, there exists a locally finite partition of unity $P = \{p_{\alpha} | \alpha \in \Omega\}$ on X subordinated to \mathfrak{ll} , with $|\Omega| \leq \mathfrak{m}$. Now for each $\alpha \in \Omega$, pick a $\lambda(\alpha) \in \Lambda$ and a $y_{\alpha} \in Y$ such that p_{α} vanishes outside $U_{\lambda(\alpha)} \in \mathfrak{ll}$ and $W_{\lambda(\alpha)} \subset Y_{\alpha} - V$. We can now set

$$f(x) = \sum p_{\alpha}(x) y_{\alpha}.$$

Then it is obvious that f(x) is a continuous function of X into Y. Since, for any $x_0 \in X$, $\{\alpha \in \Omega \mid p_\alpha(x_0) > 0\}$ is a finite subset of Ω , we denote it by $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$. Then, since $x_0 \in \{x \mid p_{\alpha_i}(x) > 0\} \subset U_{\lambda(\alpha_i)}$, we obtain $\varphi(x_0) \cap W_{\lambda(\alpha_i)} \neq \phi$. Hence it follows from $W_{\lambda(\alpha_i)} \subset y_{\lambda(\alpha_i)} - V$ that $\varphi(x_0)$ $\cap (y_{\lambda(\alpha_i)} - V) \neq \phi$. Thus we have

$$y_{\lambda(\alpha_i)} \subset \varphi(x_0) + V \quad (i=1, 2, \cdots, n),$$

which means that

$$f(x_0) = \sum p_{\alpha}(x_0) y_{\alpha} \in \varphi(x_0) + V.$$

This completes the proof of this lemma.

Lemma 2. ([3, Theorem 3.1']) The following properties of a T_1 -space are equivalent.

(a) X is normal.

(b) If Y is a separable Banach space, then every lower semicontinuous carrier $\varphi: X \rightarrow C(Y)$ admits a selection.

Proof of Theorem 1. (a) \rightarrow (b). This can be proved by the same way as in the proof of [3, Theorem 3.2''] besides using Lemma 1. (b) \rightarrow (a). From the same arguments as in the proof of [3, Theorem 3.2''], if follows that every open covering $ll = \{U_{\lambda} | \lambda \in A\}$ of X with $|A| \leq m$ admits a partition of unity (not necessarily locally finite) subordinated to it. Since it follows from Lemma 2 that X is normal, and X is m-paracompact by virtue of Theorem 2 in the previous paper [2], we complete the proof.

Corollary 1. ([3, Theorem 3.1"]) The following properties of a T_1 -space are equivalent.

(a) X is normal and countably paracompact.

(b) If Y is a separable Banach space, then every lower semicontinuous carrier $\varphi: X \rightarrow F(Y)$ admits a selection.

Corollary 2. ([3, Theorem 3.2"]) The following properties of a T_1 -space are equivalent.

(a) X is paracompact.

(b) If Y is a Banach space, then every lower semi-continuous carrier $\varphi: X \rightarrow F(Y)$ admits a selection.

In the sequel we characterize a 0-dimensional m-paracompact and normal space by the property of lower semi-continuous carriers.

Theorem 2. The following properties of a T_1 -space are equivalent.

652

(a) X is 0-dimensional m-paracompact and normal.

(b) If Y is a Banach space which has an open base of power $\leq m$, then every lower semi-continuous carrier $\varphi: X \rightarrow A(Y)$ admits a selection.

As a first step, we shall state the following lemmas.

Lemma 3. ([5, Theorem 2.1]) If X is a normal space of dimension $\leq n$, then any locally finite open covering of X has an open refinement of order $\leq n+1$.

Lemma 4. If X is 0-dimensional m-paracompact and normal, Y a paracompact uniform space with an open base of power $\leq m$, $\varphi: X \rightarrow 2^{Y}$ a lower semi-continuous carrier, and if V is a symmetric uniform neighborhood of Y, then there exists a continuous function $f: X \rightarrow Y$ such that $f(x) \in V(\varphi(x))$ for every x in X.

Proof. Since $\{V(y) | y \in Y\}$ is an open covering of Y and Y has an open base with power $\leq m$, there exists a locally finite open refinement $\{W_{\lambda} | \lambda \in \Lambda\}$ of $\{V(y) | y \in Y\}$, with $|\Lambda| \leq m$. Let $U_{\lambda} = \{x \in X | \varphi(x) \cap W_{\lambda} \neq \phi\}$. Clearly U_{λ} is open in X and $\mathbb{U} = \{U_{\lambda} | \lambda \in \Lambda\}$ is an open covering of X. Since X is 0-dimensional m-paracompact and normal, it follows from Lemma 3 that there exists an open refinement $\mathfrak{B} = \{V_{\alpha} | \alpha \in \Omega\}$ of \mathbb{U} such that $V_{\alpha} \cap V_{\beta} = \phi$ as $\alpha \neq \beta$. Now, for each $\alpha \in \Omega$, pick a $\lambda(\alpha) \in \Lambda$ and a y_{α} in Y such that $V_{\alpha} \subset U_{\lambda(\alpha)}$ and $W_{\lambda(\alpha)} \subset$ $V(y_{\alpha})$. Since, for any x in X, there exists only one element $\alpha(x) \in \Omega$ such that $x \in V_{\alpha(x)}$. We now set $f(x) = y_{\alpha}$ as $x \in V_{\alpha}$. Then it is obvious that f(x) is a continuous function of X into Y. Since $x \in V_{\alpha}$ implies $x \in U_{\lambda(\alpha)}$, we obtain $\varphi(x) \cap W_{\lambda(\alpha)} \neq \phi$. Hence $\varphi(x) \cap V(y_{\alpha}) \neq \phi$. This shows that $y_{\alpha} \in V(\varphi(x))$. Thus f(x) satisfies all our requirements. This completes the proof of this lemma.

Proof of Theorem 2. Since we can prove that $(a)\rightarrow(b)$ by the same way as in the proof of [3, Theorem 3.2''] without any alterations besides using Lemma 4, we shall show only that $(b)\rightarrow(a)$.

Let $\mathfrak{U}_{2}|\lambda \in \Lambda$ be an open covering of X with $|\Lambda| \leq \mathfrak{m}$, and let us consider Λ as a metric space such that each pair of distinct points of Λ have distance 1. Then a metric space Λ can be imbedded as a neighborhood retract in a suitable (generalized) Hilbert space Y with an open base of power $\leq \mathfrak{m}^{2^{\circ}}$ Now, for any $x \in X$, let $\varphi(x)$ $= \{\lambda | x \in U_{\lambda}\}$. Then $\varphi: X \to A(Y)$ is lower semi-continuous. In fact, for any subset Λ_{0} of Λ , $\{x \in X | \varphi(x) \cap \Lambda_{0} \neq \phi\} = \bigcup_{\lambda \in \Lambda_{0}} U_{\lambda}$, which shows lower semi-continuity of φ . Hence, by (b), we can select a continuous function $f: X \to Y$ such that $f(x) \in \varphi(x)$ for every $x \in X$. Since the inverse images $f^{-1}(\lambda)$ form an open covering of X of order 1 which refines \mathfrak{l}, X becomes a 0-dimensional m-paracompact space. Furthermore it

²⁾ Cf. Dowker [1, Remark (p. 313)].

follows from Lemma 2 that X is normal. This completes the proof.

Corollary 1. The following properties of a T_1 -space are equivalent.

(a) X is 0-dimensional countably paracompact and normal.

(b) If Y is a separable Banach space, then every lower semicontinuous carrier $\varphi: X \rightarrow A(Y)$ admits a selection.

Corollary 2. The following properties of a T_1 -space are equivalent.

(a) X is 0-dimensional paracompact and normal.

(b) If Y is a Banach space, then every lower semi-continuous carrier $\varphi: X \rightarrow A(Y)$ admits a selection.

Remark. As is easily seen, we can replace "a Banach space" in Theorem 2 and Corollaries 1, 2 with "a complete metric space".

Corollary 3. If Y is a complete metric space with an open base of power $\leq m$, X a 0-dimensional m-paracompact and normal space, and if the map $u: Y \rightarrow X$ is continuous, open and onto, then there exists a continuous $f: X \rightarrow Y$ such that $f(x) \in u^{-1}(x)$ for every $x \in X$.

Proof. Define $\varphi: X \to A(Y)$ by $\varphi(x) = u^{-1}(x)$. By Example 1.1* of [3], φ is lower semi-continuous. Hence, by Theorem 2, there exists a selection f for φ , and clearly f satisfies our requirements.

[4, Corollary 1.4] is an immediate consequence of this corollary.

References

- [1] C. H. Dowker: On a theorem of Hanner, Arkiv för Mat., 2, 307-313 (1957).
- [2] T. Ishii: Some characterizations of m-paracompact spaces. I, Proc. Japan Acad., 38, 480-483 (1962).
- [3] E. Michael: Continuous selections. I, Ann. of Math., 63, 361-382 (1956).
- [4] E. Michael: Continuous selections. II, Ann. of Math., 64, 562-580 (1956).
- [5] K. Morita: On the dimension of normal spaces. II, Jour. of Jap. Math. Soc., 2, 16-33 (1950).