139. Unique Continuation Theorem of Elliptic Systems of Partial Differential Equations

By Kazunari HAYASHIDA

Department of Applied Mathematics, Nagoya University (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1962)

1. Let L be a linear partial differential operator defind in a domain \mathfrak{D} of the *n*-dimensional Euclidean space \mathbb{R}^n . For simplicity, we assume that the origin 0 of \mathbb{R}^n is contained in \mathfrak{D} . Denoting by $x = (x_1, \dots, x_n)$ a point of \mathbb{R}^n , we can write

$$L = L(x, D) = \sum_{\alpha} a_{\alpha}(x) D^{\alpha},$$

where α is a sequence $(\alpha_1, \dots, \alpha_n)$ of *n* non-negative integers,

$$D^{\alpha} = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \cdots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}}$$

and each $a_{\alpha}(x)$ is a real-valued continuous function in \mathfrak{D} . We use a notation $|\alpha| = \alpha_1 + \cdots + \alpha_n$. Put $r = |x| = (\sum_{i=1}^n x_i^2)^{1/2}$.

Friedman [3] proved the following.

Let u(x) be a constant-signed solution, in \mathfrak{D} , of an elliptic differential equation Lu=0 of order 2s. If

(1)
$$\lim_{r\to 0} \frac{D^{*}u(x)}{r^{k}} = 0$$
 for any positive integer k,

where α is an arbitrary sequence with $|\alpha| \leq 2s-1$, then u(x) vanishes identically in \mathfrak{D} .

And Pederson [4] gave an improvement of this theorem. That is, he proved that, in the above theorem, the assumption (1) can be replaced by the condition that there exists a positive integer Nsatisfying

$$\lim_{r\to 0}\frac{D^{\alpha}u}{r^{N}}=0$$

for every $\alpha(0 \leq |\alpha| \leq 2s-1)$ and being dependent on L and independent of u.

Now consider an elliptic system of linear partial differential equations

(2)
$$\sum_{j=1}^{p} l_{ij} u_j = 0 \quad (i=1,\cdots,p)$$

in unknown functions u_1, \dots, u_p , where l_{ij} is a linear partial differential operator with variable coefficients continuous in \mathfrak{D} . Carleman [1] proved the following.

In the case when in (2), p=2, n=2 and $l_{ij}(i, j=1, 2)$ are of order 1, each solution u_j of (2), satisfying

No. 9]

$$\lim_{r\to 0} \frac{u_j(x)}{r^k} = 0 \quad \text{for any positive integer } k,$$

vanishes identically in D.

In this note, we shall give a result similar to Pederson's theorem for a system (2) under some additional conditions.

2. Before stating our result, we prove the following

Lemma. Let $L(x, D) = \sum_{\alpha} a_{\alpha}(x)D^{\alpha}$ be an elliptic linear partial differential operator of order 2s. Then there exist positive constants m, r_0 and k_0 such that, if $0 < r \le r_0$ and $k_0 \le k$,

$$L(x, D)\frac{e^{\lambda r^2}}{r^{2k}} \ge m\lambda^{2s} \frac{e^{\lambda r^2}}{r^{2(k-s)}} \quad for any \ \lambda < 0,$$

where m, r_0 and k_0 are independent of λ and, in particular, k_0 depends only on L(x, D).

Proof. It is easy to see that

$$(3) \qquad D^{\alpha} \frac{e^{\lambda r^{2}}}{r^{2k}} = \sum_{q=1}^{|\alpha|} \alpha_{1}! \cdots \alpha_{n}! \frac{d^{q}}{d\rho^{q}} \frac{e^{\lambda \rho}}{\rho^{k}} \left(\sum_{\substack{|\beta+r|=q\\\beta+2r=a}} \frac{2^{|\beta|}}{\beta_{1}! \cdots \beta_{n}!} \gamma_{1}! \cdots \gamma_{n}! x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}} \right)$$

and

$$(4) \quad \frac{d^{q}}{d\rho^{q}} \frac{e^{\lambda\rho}}{\rho^{k}} = \left(\lambda^{q} \frac{1}{r^{2k}} + \sum_{l=1}^{q} \lambda^{q-l} (-1)^{l} \binom{q}{l} k(k+1) \cdots (k+l-1) \frac{1}{r^{2(k+1)}} \right) e^{\lambda r^{2}},$$

where $\rho = r^2$ and $\beta + 2\gamma$ means the sum of vectors $(\beta_1, \dots, \beta_n)$ and $(2\gamma_1, \dots, 2\gamma_n)$. In \mathfrak{D} , we consider a closed sphere with center 0 and of radius r_1 . Since L(x, D) is elliptic, we can find a positive number c such that

$$\sum_{|\alpha|=2s} \alpha_{\alpha}(x) x_1^{\alpha_1} \cdots x_n^{\alpha_n} \geq c r^{2s}$$

for $r = (\sum_{i=1}^{n} x_i^2)^{1/2} \leq r_2$. From now on, we assume $0 < r \leq r' = Min(r_1, r_2)$ and $\lambda < 0$. If q is even, each term on the right hand side of (4) is positive. Hence

$$\begin{split} L(x, D) &\frac{e^{\lambda r^{2}}}{r^{2k}} = \sum_{|\alpha|=2s} a_{\alpha}(x) D^{\alpha} \frac{e^{\lambda r^{2}}}{r^{2k}} + \sum_{|\alpha|\leq 2s-1} a_{\alpha}(x) D^{\alpha} \frac{e^{\lambda r^{2}}}{r^{2k}} \\ &= \sum_{|\alpha|=2s} a_{\alpha}(x) \alpha_{1}! \cdots \alpha_{n}! \frac{d^{2s}}{d\rho^{2s}} \frac{e^{\lambda \rho}}{\rho^{k}} \frac{2^{2s}}{\alpha_{1}! \cdots \alpha_{n}!} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \\ &+ \sum_{|\alpha|=2s} a_{\alpha}(x) \alpha_{1}! \cdots \alpha_{n}! \sum_{q=1}^{2s-1} \frac{d^{q}}{d\rho^{q}} \frac{e^{\lambda \rho}}{\rho^{k}} \left(\sum_{\substack{|\beta+r|=q\\\beta+2r=\alpha}} \frac{2^{|\beta|}}{\beta_{1}! \cdots \beta_{n}!} \gamma_{1}! \cdots \gamma_{n}!} x_{1}^{\beta_{1}!} \cdots x_{n}^{\beta_{n}} \right) \\ &+ \sum_{|\alpha|\leq 2s-1} a_{\alpha}(x) \alpha_{1}! \cdots \alpha_{n}! \sum_{q=1}^{|\alpha|} \frac{d^{q}}{d\rho^{q}} \frac{e^{\lambda \rho}}{\rho^{k}} \left(\sum_{\substack{|\beta+r|=q\\\beta+2r=\alpha}} \frac{2^{|\beta|}}{\beta_{1}! \cdots \beta_{n}!} \gamma_{1}! \cdots \gamma_{n}!} x_{1}^{\beta_{1}!} \cdots x_{n}^{\beta_{n}} \right) \\ &\geq 2^{2s} cr^{2s} \frac{d^{2s}}{d\rho^{2s}} \frac{e^{\lambda \rho}}{\rho^{k}} \\ &- M_{1}(2s+1)^{n-1} (2s)! \sum_{q=s}^{2s-1} \left| \frac{d^{q}}{d\rho^{q}} \frac{e^{\lambda \rho}}{\rho^{k}} \right| (2nr)^{2q-2s} \\ &- M_{2} \sum_{|\alpha|\leq 2s-1} (|\alpha|+1)^{n-1} |\alpha|! \sum_{q=\lfloor \frac{|\alpha|}{2} + 1} \frac{|\alpha|}{d\rho^{q}} \frac{d^{q}}{\rho^{k}} |(2nr)^{2q-|\alpha|}, \end{split}$$

631

K. HAYASHIDA

[Vol. 38,

In the right hand side of this inequality, we compare the coefficient of each term in the first sum with that of $|\lambda|^{q-l''}$ in the third sum. If 2s-l=q-l'', then $2(k+l-s)>2(k+l'')+|\alpha|-2q$ for any $\alpha(|\alpha|\leq 2s-1)$ and any $q\left(\left\lceil\frac{|\alpha|}{2}\right\rceil+1\leq q\leq |\alpha|\right)$. Therefore, we can choose a sufficiently small number $r_0(< r')$ such that, when $0< r\leq r_0$,

$$\begin{split} L(x, D) &\frac{e^{\lambda r^2}}{r^{2k}} - m\lambda^{2s} \frac{e^{\lambda r^2}}{r^{2(k-s)}} \\ & \geq \frac{m}{2} \sum_{l=1}^{2s} |\lambda|^{2s-l} {2s \choose l} k(k+1) \cdots (k+l-1) \frac{1}{r^{2(k+l-s)}} \\ & -K_1 \sum_{q=s}^{2s-1} \left(\frac{|\lambda|^q}{\rho^k} + \sum_{l'=1}^q |\lambda|^{q-l'} {q \choose l'} k(k+1) \cdots (k+l'-1) \frac{1}{r^{2(k+l'+s-q)}} \right]. \end{split}$$

In the above, we compare the coefficient of $|\lambda|^{2s-l}$ of the first sum with that of the second sum. If 2s-l=q-l', then 2(k+l-s)=2(k+l'+s-q) and $l'\leq l-1$. Hence we have the required inequality for $k\geq k_0$ by taking k_0 suitably.

3. We consider linear differential operators (l_{ij}) $(i, j=1, \dots, p)$ with variable coefficients defined in \mathfrak{D} . Every l_{ij} can be expressed as follows:

$$l_{ij} = l_{ij}(x, D) = \sum a^{ij}_{\alpha}(x) D^{\alpha}.$$

For an arbitrary real *n*-dimensional vector $\xi = (\xi_1, \dots, \xi_n)$, there exists a one to one correspondence between operators $l_{ij}(x, D)$ and polynomials $l_{ij}(x, \xi) = \sum a_{\alpha}^{ij}(x)\xi^{\alpha}$ in ξ .

Assume that there are 2p integers $s_1, \dots, s_p, t_1, \dots, t_p$ such that the order of l_{ij} does not exceed s_i+t_j . Denote by $l'_{ij}(x,\xi)$ the sum of terms in $l_{ij}(x,\xi)$ which are exactly of order s_i+t_j with respect to ξ_1, \dots, ξ_n , where it is to be understood that $l_{ij}(x,\xi) \equiv 0$ if the order of $l_{ij}(x,\xi)$ in ξ is less than s_i+t_j . The determinant $L(x,\xi)$ of the characteristic matrix

(5) $(l'_{ij}(x,\xi))$

of (l_{ij}) is a polynomial in ξ which is homogeneous of degree $\sum_{i=1}^{\nu} (s_i + t_i)$. The system

$$\sum_{j=1}^{p} l_{ij}(x, D) u_j = 0, \quad i = 1, \cdots, p$$

is called elliptic, if there exist s_i and t_i $(i=1, \dots, p)$ such that $L(x, \xi)$ is positive definite at every point x in \mathfrak{D} . This definition is due to Douglis and Nirenberg [2].

We say that the elliptic system in the above sense is (*)-elliptic, if it satisfies the following condition:

(*) When $q \neq j$, the order of

$$\sum_{i=1}^{p} L_{iq}(x, D) l_{ij}(x, D) \quad (q, j = 1, \cdots, p)$$

is less than $\sum_{i=1}^{p} (s_i + t_i)$, where $L_{iq}(x, \xi)$ is the cofactor of $l'_{iq}(x, \xi)$ of the determinant of (5).

Example. Consider a system

$$\begin{pmatrix} \frac{\partial^3 u_1}{\partial x_1^3} + \frac{\partial^2 u_2}{\partial x_2^2} + a_1(x) \frac{\partial u_1}{\partial x_1} + a_2(x) \frac{\partial u_1}{\partial x_2} + b_1(x) \frac{\partial u_2}{\partial x_1} + b_2(x) \frac{\partial u_2}{\partial x_1} + a_3(x) u_1 \\ - \frac{\partial^2 u_1}{\partial x_2^2} + \frac{\partial u_2}{\partial x_1} + c(x) u_1 + d(x) u_2 = 0 \end{pmatrix}$$

in a domain of R^2 . Taking $s_1=2$, $s_2=1$, $t_1=1$, $t_2=0$, we see our system is (*)-elliptic in our sense. It is easy to verify that Carleman's system stated in §1 is also (*)-elliptic.

Now we can state the

Theorem. Let

(6)
$$\sum_{j=1}^{p} l_{ij}(x, D) u_{j} = 0, \quad i = 1, \cdots, p$$

be an (*)-elliptic system whose coefficients have continuous derivatives of order $\sum_{i=1}^{p} (s_i+t_i)$ in \mathbb{D} and let $u_j(x)$ $(j=1,\dots,p)$ be solutions of the above system. If each $u_i(x)$ $(1 \leq i \leq p)$ is constant-signed, non-negative or non-positive, in \mathbb{D} , then there exists a number N depending only on (l_{ij}) such that each $u_i(x)$ vanishes identically in \mathbb{D} provided that

$$\lim_{r o 0}rac{D^lpha u_j(x)}{r^N}\!=\!0, \quad i\!=\!1,\!\cdots,p$$

for every α $(|\alpha| \leq \sum_{i=1}^{p} (s_i+t_i)-1).$

Proof. Operating $L_{iq}(x, D)$ to the left hand side of (6) and summing up for i, we have

(7)
$$\sum_{i} L_{iq}(x, D) l_{iq}(x, D) u_q + \sum_{\substack{i,j \\ j \neq q}} L_{iq}(x, D) l_{ij}(x, D) u_j = 0.$$

By the condition (*), (7) can be written in the form

633

No. 9]

K. HAYASHIDA

(8)
$$L(x, D)u_q + \sum_{j=1}^{p} R_{jq}(x, D)u_j = 0,$$

where $R_{jq}(x, D)$ is a linear partial differential operator whose order is less than $\sum_{i=1}^{p} (s_i + t_i)$ and $L(x, \xi)$ is the determinant of (5). Put

$$v_q = egin{cases} u_q, & ext{if } u_q \geqq 0, \ -u_q, & ext{if } u_q \leqq 0. \end{cases}$$

From (8), we get

$$\sum_{q=1}^{p} L(x, D) v_{q} = \sum_{q=1}^{p} R_{q}(x, D) v_{q},$$

where $R_q(x, D)$ is a linear partial differential operator with order less than $\sum_{i=1}^{p} (s_i + t_i)$. We put

$$L(x, D) - R_q(x, D) = L_q(x, D)$$

and denote by $\overline{L}_q(x, D)$ the adjoint operator of $L_q(x, D)$. Since every $\overline{L}_q(x, D)$ is also an elliptic operator with coefficients continuous in \mathfrak{D} and has a principal part, common with $L_q(x, D)$, of order $\sum_{i=1}^{p} (s_i + t_i)$, we can apply our lemma to $\overline{L}_q(x, D)$ and we see that there exist numbers $m_{q_1} r_q$ and k_0 such that, if $\lambda < 0, 0 < r \leq r_q$ and $k_0 \leq k$, it holds

$$\bar{L}_{q}(x, D) \frac{e^{\lambda r^{2}}}{r^{2k}} \ge m_{q} \lambda^{t} = 1^{(s_{i}+t_{i})} \frac{e^{\lambda r^{2}}}{r^{2k-\frac{p}{i-1}(s_{i}+t_{i})}}.$$

Putting $r_0 = \min_{1 \le q \le p} r_q$ and $m_0 = \min_{1 \le q \le p} m_q$, we have

(9)
$$\overline{L}_{q}(x, D) \frac{e^{\lambda r^{2}}}{r^{2k}} \ge m_{0} \lambda_{i=i}^{p} \sum_{j=1}^{p} (s_{i}+t_{j})} \frac{e^{\lambda r^{2}}}{r^{2k-\sum_{j=1}^{p} (s_{j}+t_{j})}}$$

for all q, if $\lambda < 0, 0 < r \le r_0$ and $k_0 \le k$. On the other hand, let $\zeta(x)$ be an infinitely differentiable function with compact carrier in $|x| < r_0$ such that $\zeta(x) = 1$ in $|x| \le \frac{r_0}{2}$. We put $w_q(x) = \zeta(x)v_q(x)$.

By Green's formula, we get

$$\int_{\substack{\epsilon \leq r \leq r_0}} w_q(x) \,\overline{L}_q(x, D) \,\frac{e^{\lambda r^2}}{r^{2k}} dV_x$$

$$= \int_{\substack{\epsilon \leq r \leq r_0}} \frac{e^{\lambda r^2}}{r^{2k}} L_q(x, D) w_q dV_x$$

$$+ \int_{\substack{r=\epsilon}} K_q \Big(D^\beta \frac{e^{\lambda r^2}}{r^{2k}}, D^r w_q(x) \Big) dS_x$$

where dV_x and dS_x denote the volume element and the area element respectively and further $K_q\left(D^{\beta}\frac{e^{\lambda r^2}}{r^{2k}}, D^rw_q(x)\right)$ is a sum of products of $D^{\beta}\frac{e^{\lambda r^2}}{r^{2k}}(|\beta| \leq \sum_{i=1}^{p} (s_i+t_i)-1), D^rw_q(x)(|\beta+\gamma| \leq \sum_{i=1}^{p} (s_i+t_i), |\gamma| \leq \sum_{i=1}^{p} (s_i+t_i)$ -1) and bounded functions. Put $N=2(k_0+\sum_{i=1}^{p} (s_i+t_i))$. If

[Vol. 38,

634

Unique Continuation Theorem of Elliptic Systems

$$\lim_{r\to 0}\frac{D^{\alpha}u_q(x)}{r^{N-|\alpha|}}=0 \quad \text{for} \quad |\alpha| \leq \sum_{i=1}^p (s_i+t_i)-1,$$

then, from (3),

No. 9]

$$\lim_{\epsilon\to 0} K_q \left(D^{\beta} \frac{e^{ir^2}}{r^{2k}}, D^r w_q(x) \right)_{r=\epsilon} = 0.$$

Thus we obtain

(10)
$$\int_{r\leq r_0} \overline{L}_q(x,D) \frac{e^{\lambda r^2}}{r^{2k}} w_q(x) dV_x \leq \int_{r\leq r_0} \frac{e^{\lambda r^2}}{r^{2k}} L_q(x,D) w_q dV_x.$$

Since $L_q(x, D)w_q = L_q(x, D)v_q$ in $|x| < \frac{r_0}{2}$ and since (9) holds, the above inequality (10) implies

$$\begin{split} m_{0} \lambda_{i=1}^{p} & e^{\lambda \left(\frac{r_{0}}{2}\right)^{2}} \sum_{q=1}^{p} \int_{r \leq \frac{r_{0}}{2}} \frac{v_{q}}{r^{2k_{0} - \sum \left(\delta_{i}+\delta_{i}\right)}} dV_{x} \\ & \leq \int_{\frac{r_{0}}{2} \leq r \leq r_{0}} e^{\lambda r^{2}} \frac{\sum_{q=1}^{p} L_{q}(x, D) w_{q}}{r^{2k_{0}}} dV_{x}. \end{split}$$

Dividing both sides by $m_0 \lambda_{i=1}^{p} e^{\lambda \left(\frac{r_0}{2}\right)^2}$ and letting $\lambda \to -\infty$, we have

$$\int_{\substack{r\leq \frac{r_0}{2}}} \frac{\sum\limits_{\substack{q=1\\p\\p=1\\i=1}}^{p} v_q}{r^{2k_0-\sum\limits_{i=1}^{p} (s_i+i_i)}} dV_x \leq 0.$$

Since every $v_q(x)$ is non-negative, we conclude that $v_q(x)$ vanishes in $|x| < \frac{r_0}{2}$, that is, $u_q(x) = 0$ in $|x| < \frac{r_0}{2}$ $(q=1,\cdots,p)$. By a classical procedure of continuation, we see the vanishing of all $u_q(x)$ in the whole domain.

Remark. In the case p=1, the above proof gives an alternating proof of Pederson's theorem.

References

- T. Carleman: Sur les systèmes linéaires aux dérivées partielles du premier ordre à deux variables, C. R. Paris, 197, 471-474 (1933).
- [2] A. Douglis and L. Nirenberg: Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math., 8, 503-538 (1955).
- [3] A. Friedman: Uniqueness properties in the theory of differential operators of elliptic type, Journ. Math. Mech., 7, 61-67 (1958).
- [4] R. N. Pederson: On the order of zeros of one-signed solutions of elliptic equations, Journ. Math. Mech., 8, 193-196 (1959).

635