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139. Unique Continuation Theorem of Elliptic Systems
of Partial Differential Equations

By Kazunari HAYASHIDA
Department of Applied Mathematics, Nagoya University
(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1962)

1. Let L be a linear partial differential operator defind in a
domain D of the m-dimensional Euclidean space R". For simplicity,
we assume that the origin 0 of R" is contained in ®©. Denoting by
x=(x,,---,%,) a point of R", we can write

L=L(x, D)= a.(x)D",

where a is a sequence (ay,---,a,) of n non-negative integers,
D“ aal a“n
ox3 oxgn

and each a.(x) is a real-valued continuous function in ©. We use a
notation |a|=a;+:::+a, Put r=|z| =(ﬁ‘I xHV2,
i=1

Friedman [3] proved the following.

Let u(x) be a constant-signed solution, in ®, of an elliptic dif-
ferential equation Lu=0 of order 2s. If
(1) limgauT(x) =0 for any positive integer £,

r—0 r
where a is an arbitrary sequence with |a| =<2s—1, then u(x) vanishes
identically in 9.

And Pederson [4] gave an improvement of this theorem. That is,
he proved that, in the above theorem, the assumption (1) can be
replaced by the condition that there exists a positive integer N
satisfying

. D
1 =0
rl-.T r¥

for every a(0=<|a|=<2s—1) and being dependent on L and independent
of u.

Now consider an elliptic system of linear partial differential equa-
tions

p 3

(2) ‘izﬂlijujzo (7":1:'"’ p)
in unknown functions u,,- - -, u,, where [,; is a linear partial differential
operator with variable coefficients continuous in ®©. Carleman [1]
proved the following.

In the case when in (2), p=2,n=2 and [,,(%, j=1, 2) are of order
1, each solution u, of (2), satisfying
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llmu;(x) =0 for any positive integer £k,
r—0

vanishes identically in 9.

In this note, we shall give a result similar to Pederson’s theorem
for a system (2) under some additional conditions.

2. Before stating our result, we prove the following

Lemma. Let L(z, D)= 3 a.(x)D* be an elliptic linear partial

differential operator of order 2s. Then there exist positive constants
m, r, and k, such that if 0<fr<7~0 and k,Zk,

L(z, D)— =>ma¥

Jor any 1<0,

Z(k 8
where m, r, and k, are mdependent of 2 and, in particular, k,
depends only on L(x, D).

Proof. It is easy to see that

are lal de ete 2|p|
3 Dai_ oo, ”!___.___< b1, .. ﬁn)
( d) e g Bl
an
dq ezp r2
(4) EEF—< ;3;4-214 (— 1)( >k(k+1) c(k+1-1) mﬂ))e‘ ,

where p=7* and B+2r means the sum of vectors (B,---,8,) and
@ry--+,27,). In D, we consider a closed sphere with center 0 and
of radius r,. Since L(x, D) is elliptic, we can find a positive number
¢ such that

I‘Z a(x)ast - - xqn = cr®
a|=28

n
for 'r=(?_|‘_l 2)*<r,. From now on, we assume 0<r=7r'=Min (r, r,)

and 2<0. If ¢ is even, each term on the right hand side of (4) is
positive. Hence

are
Lz, D)4 = 3 a (@)D —+ S e >D«
r laj=28 laj <28
y aF et 2% o n
_|§"‘ a(®)ay!- - d E o al !xl o
Iel
+ aa(x)a'l o) 2 v 4t e_,,—< = 2 b . ,xf"a>
2=1 dp? p* o= Bl Bl il eyl
Ll 2 7]
F 3 a@al a3 5 2 ot -atr)
lalS28—1 =1dp? p* 291_21;[:‘1 Bil-- Bl rdeer,)
dZs elp
22280,,.28_______
- dp2s plc
— M,(2s+1) 1(23)'2] ‘(2m~)2q 2s
Ial
—M; 3 (lal 4Dl 33 A2 gy,
lal<28—1 0= [ ]+1 dpq
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where M1=Is]u£)|aa(x)| and M2=' sup |a.(x)]. Setting m=2%¢ and K,
| =28 a|<28—1
r=7ry rsry

=M;(2s+1)""*(2s)! (=1, 2), we get
L, D) & —ma &
r

,’.Z(k-s)

zm 312+ ol 1)+ o =)

2(k+l -8

28—1

Kz(”| + 33120 ( ,>k(k+1) (k1 —1)

2(lc+L’+s -

_K, <|” £ l"< ,,>k(k+1)..-(k+l"—1)
lejs28—1 q=[%]+1 p =1

% 1
,r2(lc+ 1) +laj—2¢ /°

In the right hand side of this inequality, we compare the coef-
ficient of each term in the first sum with that of |2]?"" in the
third sum. If 2s—Il=q¢—1", then 2(k+!—s)>2(k+1")+ |a|—2¢ for

any a(|a| £2s—1) and any q([l—gl:|+1§q§ |a|>. Therefore, we can
choose a sufficiently small number r,(<7') such that, when 0<r=r,

are ars
L(z, D)%; —maz £

,r2(k—s)

w2 1
2_1_12_@_21”'2 z( l8>k(k+1)...(k—-|—l—1)m

~ ST (B S ()R el =)

In the above, we compare the coefficient of [21]|*~* of the first sum
with that of the second sum. If 2s—Il=qg—10', then 2(k+4I—s)
=2(k+U'+s—q) and I'<1—1. Hence we have the required inequality
for k=k, by taking k, suitably.

3. We consider linear differential operators (I;,) (7,5=1,---,p)
with variable coefficients defined in ©. Every [;; can be expressed
as follows:

L=l (e, D)=2a(x)D".

For an arbitrary real n-dimensional vector £=(&,,- -+, &,), there exists a
one to one correspondence between operators I, (x, D) and polynomials

L (@, 9)=3) a(@)* in &.

Assume that there are 2p integers s,,---,s,, ¢+, ¢, such that
the order of I,, does not exceed s;4t,. Denote by I, (x,&) the sum
of terms in I;,(x, £) which are exactly of order s;,+¢; with respect to
&, -+, &, where it is to be understood that [, (%, £)=0 if the order of
l,(x, €) in £ is less than s;+t;. The determinant L(z, ¢) of the charac-



No. 9] Unique Continuation Theorem of Elliptic Systems 633

teristic matrix
(5) (lis(, £)) .
of (I;;) is a polynomial in & which is homogeneous of degree E(si—l'ti)'
The system
jﬁ;li,(x, Dyu,=0, i=1,---,p

is called elliptie, if there exist s, and ¢, (¢=1,.-.,p) such that
L(z, &) is positive definite at every point  in ®©. This definition is
due to Douglis and Nirenberg [2].

We say that the elliptic system in the above sense is (x)-elliptic,
if it satisfies the following condition:

(*) When g2, the order of

S\Li(a, D@, D) (4,5=1,++,7)

is less than 2(si+ti), where L,(x,&) is the cofactor of lj(x,&) of

the determlnant of (5).
Example. Consider a system

i et Gl e o) 28 a“1+a2<w>—% by @i? by(x) a“2+aa<x>u1
+ bs(x)uz =

a LI au2+0(w)u1+d(w)uz—
ox: 0%,

in a domain of Rz. Taking s,=2, s,=1, ¢,=1, {,=0, we see our system
is (x)-elliptic in our sense. It is easy to verify that Carleman’s system
stated in §1 is also (x)-elliptic.

Now we can state the

Theorem. Let

(6) glij(va)ujzoy /i::l;""p
be an (x)- ellipt'ic system whose coefficients have continuous derivatives
of order Z(si+t) m D and let u,x) (=1, -, p) be solutions of the

above system If each u,(x) (1=i=p) is constant-signed, non-negative

or non-positive, in D, then there exists a number N depending only

on (I;;) such that each wu,(x) vanishes identically in D provided that
1imD.ﬂ;V,@l=o
r—( r

’£=1,‘ Y 4

for every a (|a| S2)(s,+t)—1).
=1
Proof. Operating L, (x, D) to the left hand side of (6) and
summing up for 4, we have
(7) ZLiq(x D)l, (%, Dyu, +2Liq(x D)l (x, Dyu,=

jﬂe?

By the condition (*), (7) can be written in the form
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o
(8) L(z, D)uq—i-j%}qu(w, Dyu,=0,
where R, (x, D) is a linear partial differential operator whose order
»
is less than g(s¢+ti) and L(z, &) is the determinant of (5). Put
qu{ w, if 4,20,

Uy if u,=0.

From (8), we get
qi: L(z, Dyv,= q”gqu(x, Dy,

where R, (x, D) is a linear partial differential operator with order
less than ﬁ(si—l-ti). We put

- L(z, D)—R,(%, D)=Lz, D)
and denote by L,(x, D) the adjoint operator of L (», D). Since every
L,(x, D) is also an elliptic operator with coefficients continuous in D
and has a principal part, common with L (x, D), of order i(si—i—ti),
we can apply our lemma to L (», D) and we see that thz;;‘e exist
numbers m,,r, and k, such that, if 2<0,0<r=7, and k,<k, it holds

b 2
7 e’ I Gt 2
Lq(x, D) —2-’0— gmqlt‘:l o Y
r 2%~ X (8;+2))
r =1

Putting 7,= min r, and m,= minm,, we have
1S¢sp 1s¢sp

. p 2
e T (8,42 e
o S Mpdi=i

7

(9) L=, D)

»
2%k~ ¥ (8;+2p)
r i=1

for all g, if 1<0,0<r<7r, and k,=k. On the other hand, let (x)
be an infinitely differentiable function with compact carrier in |z|
<7, such that {(x)=1 in |x| é-;l. We put w,(x)=C(x)v,(x).
By Green’s formula, we get
elrﬁ

[ w@ L D) Llav,

,,.210
§SrsTo

elrl
— f o L@, DywdV.

eSrsro
+ [ (D57, Dww)as,
where dV, and dS, denotre=‘the volume element and the area element
respectively and further KQ<D5 %;, D’wq(x)) is a sum of products
of D*20(| Bl ST (ekt) — 1), Dw@)(| B+7] SJy(sct0), || S Tyec+ )
»
—1) and bounded functions. Put N =2(k0+§1(si+tt)). If
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?

im 2%@) —o for |a| =3 stt)-1

>0 rN-—Ial

then, from (3),
irs
lim K, (Dﬂ S D’wq(x)>r=‘ =0,

Thus we obtain

. ar2 ar2
(10) f L(z, D)-:qu(w)deg f % (&, D)w,dV,.
r<ro rSro
Since L, (x, Dyw,=L,(x, D)v, in |2|< —;-0 and since (9) holds, the above
inequality (10) implies

b4 70\2 p
5 @+t (o ,
My Ai=1 e(2 Zf - ——dV,
= 2k~ 5 (8;+2
7‘5%/" 0 't=f 42

»
ar2 21Lq(m’ D)wq
= et —dV,.
,,.27:0
To<r<rg
2
. g . T o) 1(%0)? .
Dividing both sides by m, 4=t e 2/ and letting A—— o, we have
yd
2%
—= dV,=0.
,,sfzg 7.2700—;51(3,;-”1)

Since every w,(®) is non-negative, we conclude that v,(x) van-
ishes in |x|<—’;9, that is, u,(®)=0 in |ao|<_’2”_0 (¢=1,---,p). By a

classical procedure of continuation, we see the vanishing of all wu,(x)
in the whole domain.

Remark. In the case p=1, the above proof gives an alternat-
ing proof of Pederson’s theorem.
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