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1. Let L be a linear partial differential operator defind in a
domain of the n-dimensional Euclidean space R. For simplicity,
we assume that the origin 0 of R is contained in . Denoting by
x-(x,..., x) a point of Rn, we can write

L-L(x, D) ,a(x)D,
where a is a sequence (a,..., a) of n non-negative integers,

and each a,(x) is a real-valued continuous function in . We use a

notation ]a]-a+...+a. Put r-]x]-(x)n.
Friedman [3 proved the following.
Let u(x) be a constant-signed solution, in , of an elliptic dif-

ferential equation Lu--O of order 2s. If

(1) lira D"u(x)=0 for any positive integer k,

where a is an arbitrary sequence with a[ 2s--1, then u(x) vanishes
identically in .

And Pederson 4J gave an improvement of this theorem. That is,
he proved that, in the above theorem, the assumption (1) can be
replaced by the condition that there exists a positive integer
satisfying

lira D"u --0
r0 T

for every a(Oa2s--1) and being dependent on L and independent
of u.

Now consider an elliptic system of linear partial differential equa-
tions

(2) Et, u -O (i-1,...,

in unknown functions u,..., u, where l is a linear partial differential
operator with variable coefficients continuous in
proved the following.

In the case when in (2), p-2, n--2 and l(i,j=l, 2) are of order
1, each solution u of (2), satisfying



No. 9J Unique Continuation Theorem of Elliptic Systems 631

limU(X---- --0 for any positive integer k,
r-*O

vanishes identically in .
In this note, we shall give a result similar to Pederson’s theorem

for a system (2) under some additional conditions.
2. Before stating our result, we prove the following
Lemma. Let L(x, D)--,a(x)D be an elliptic linear partial

differential operator of order 2s. Then there exist positive constants
m, ro and ko such that, if O<rGro and koGk,

er erL(x,D)--=-.m2’ for any 0,
2(k-s)

where m, ro and ko are independent of and, in particular, ko
depends only on L(x, D).

Proof. It is easy to see that

(3) D"e’r.---[ ’"’ dq eo( q

2t,’ )!...
q= dp p , fl!. fl] y!.

and

(4) d e_(2q 1. q_: ( ) 1 ..) e’’,dp p--\ re ,2q (--1) k(k+l)"’(k+l--1)r(/,

, a(x)x’ x" >= cr
lal=2s

x) _<r.. From now on, we assume 0 <r__Kr’--Min (%, r)
and 2<0. If q is even, each term on the right hand side of (4) is
positive. Hence

where p__,a and fl+2" means the sum of vectors (fl,...,/) and
(2’,..., 2,). In , we consider a closed sphere with center 0 and
of radius %. Since L(x, D) is elliptic, we can find a positive number
c such that
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where Ml-supla(x) and M2- sup a(x) ]. Setting m-2c and K

=M,(2s+l)n-l(2s)! (i--l, 2), we get

L(x, D)
r

n =,EII ’- a(k+ 1)... (+

-g l + -" , (+1)...(+t"-1)
Ia]2,--1 q=E] +

T2(k ) laI-2

In the right hand side of this inequality, we compare the coef-
ficient of each term in the first sum with that of 2[-" in the
third sum. If 2s--l-q--l", then 2(k+l--s)>2(k+l")+a--2q for

any a([a[2s--1)and any q(J+lgq,a,). Therefore, wecan

choose a sufficiently small number ro(<r’) such that, when O<rro,
er ern(x, D) T2(k s)- (+)...(+t-)

-KE [ + -’ (+1)...(+t’-1)
l=lq=s k

In the above, we compare the coefficient of ][- of the first sum
with that of the second sum. If 2s--l--q--l’, then 2(k+l--s)
=2(k+l’+s--q) and l’l--1. Hence we have the required inequality
for kko by taking ko suitably.

3. We consider linear differential operators (l) (i, j-i,..., p)
with variable coefficients defined in . Every l can be expressed
as follows:

l=l(x, D) a(x)D.
For an arbitrary real n-dimensional vector -($,..., $), there exists a

one to one correspondence between operators l(x, D) and polynomials

l(x, $) aY(x) in $.

Assume that there are 2p integers s,..., s, t,..., t such that
the order of l does not exceed s+t. Denote by l’(x,$) the sum
of terms in l(x,) which are exactly of order s+t with respect to
$,...,$, where it is to be understood that l.,(x, $)0 if the order of

l(x, $) in is less than s+t. The determinant Lx, $) of the charac-
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teristic matrix
5 ) (tS(x, $))

of (l) is a polynomial in $ which is homogeneous of degree ,(s+t).
The system

ltj(x, D)uj=O, i= l,. p

is called elliptic, if there exist s and t (i=1, ...,p) such that
L(x, ) is positive definite at every point x in . This definition is
due to Douglis and Nirenberg [2].

We say that the elliptic system in the above sense is (.)-elliptic,
if it satisfies the following condition:

(.) When q#j, the order of

L(x, D)l(x, D) (q, j=l,..., p)

is less than .(s+t), where L(x,$) is the cofactor of l(x,) of

the determinant of (5).
Examplv. Consider a system

3u u u b(x) b(x)+a(x)ux+Ox +a(x) +ax) + +
X

u eu +b(x)u-O,- ++o()+()-0
in a domain of R. Taking -2, --1, t--l, t--O, we see our system
is (.)-elliptic in our sense. It is easy to verify that Carleman’s system
stated in 1 is also (.)-ellitie.

Now we can state the
Theorem. Let

( 6 , li,(x, D)uj=0, i= 1,..., p
j=l

be an (,)-elliptic system whose coefficients have continuous derivatives

of order , (s+t) in and let u(x) (3"-1,..., p) be solutions of the

above system. If each u(x) (1 <= i < p) is constant-signed, non-negative
or non-positive, in ), then there exists a number N depending only
on (l) such that each ui(x) vanishes identically in . provided that

lim Du(x). =0, i--l,..., p
rO rN

for every a (I a <= (s -Y t) 1).

Proof. Operating Lq(x,D) to the left hand side of (6) and
summing up for i, we have
7 ) L,q(X, D)l,q(x, D)uq+ ,L,q(x, D)lt,(x, D)uj--O.

jq

By the condition (.), (7) can be written in the form
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8 ) L(x, D)uq+Rq(x, D)%=0,
where Rjq(x, D) is a linear partial differential operator whose order

is less than (s+t) and L(x, ) is the determinant of (5). Put

Uq, if uq__>0,
-uq, if %_<_0.

From (8), we get

L(x, D)vq--q=Rq(x, D)vq,

where Rq(X,D) is a linear partial differential operator with order

less than ](s+t). We put

L(x, D)-Rq(X, D)-Lq(x, D)
and denote by Lq(x, D) the adjoint operator of Lq(x, D). Since every

Lq(X, D) is also an elliptic operator with coefficients continuous in

and has a principal part, common with Lq(X, D), of order (s+t),
we can apply our lemma to Lq(x, D) and we see that there exist

numbers mq,% and k0 such that, if O, 0 r rq and k0g k, it holds

Putting ro= min rq and too-rain mq, we have
lqp lq_p

for all q, if ,O,Or<ro and ko<=k. On the other hand, let 5(x)
be an infinitely differentiable function with compact carrier in Ix[

Or0 such that (x) =1 in xl < r-A We put wq(x)-5(X)Vq(X).2"
By Green’s formula, we get

earf Wq(X) Lq(gC, D) T[dVx
_’ro

f -Lq(x,D)wqdV.

Drw(x)

where dV and dS denote the volume element and the area element

respectively and further K D, Drwe() is a sum of roduets

D e, v

--1) and bounded funetions. Put N=2(ko+(,+*)). If
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lim Duq(x) =0 for a <(s,+t,)---l,
r-*O 7’N-ll --then, from (3),

limKq(Da e" )
Thus we obtain

(10)

Since Lq(x, D)wq--Lq(x, D)vq in ]x}< r_o and since (9) holds, the above
2

inequality (10) implies

D)w 
<--f e’’ =1 dVx.

Dividing boh sides by mo TM and letting 2--, we have

dVx_O.

Since every %(x) is non-negative, we conclude that vq(x) van-
’o ’0ishes in [x[<-, that is, uq(x)--O in [x[<-- (q--1,...,p). By a

classical procedure of continuation, we see the vanishing of all uq(x)
in the whole domain.

Remark. In the case p--l, the above proof gives an alternat-
ing proof of Pederson’s theorem.
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