139. Unique Continuation Theorem of Elliptic Systems of Partial Differential Equations

By Kazunari Hayashida
Department of Applied Mathematics, Nagoya University (Comm. by K. Kunugi, m.J.A., Nov. 12, 1962)

1. Let L be a linear partial differential operator defind in a domain \mathfrak{D} of the n-dimensional Euclidean space R^{n}. For simplicity, we assume that the origin 0 of R^{n} is contained in \mathfrak{D}. Denoting by $x=\left(x_{1}, \cdots, x_{n}\right)$ a point of R^{n}, we can write

$$
L=L(x, D)=\sum_{\alpha} a_{\alpha}(x) D^{\alpha},
$$

where α is a sequence $\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ of n non-negative integers,

$$
D^{\alpha}=\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial x_{n}^{\alpha_{n}}}
$$

and each $a_{\alpha}(x)$ is a real-valued continuous function in \mathfrak{D}. We use a notation $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$. Put $r=|x|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$.

Friedman [3] proved the following.
Let $u(x)$ be a constant-signed solution, in \mathfrak{D}, of an elliptic differential equation $L u=0$ of order $2 s$. If

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{D^{\alpha} u(x)}{r^{k}}=0 \quad \text { for any positive integer } k \tag{1}
\end{equation*}
$$

where α is an arbitrary sequence with $|\alpha| \leqq 2 s-1$, then $u(x)$ vanishes identically in \mathfrak{D}.

And Pederson [4] gave an improvement of this theorem. That is, he proved that, in the above theorem, the assumption (1) can be replaced by the condition that there exists a positive integer N satisfying

$$
\lim _{r \rightarrow 0} \frac{D^{\alpha} u}{r^{N}}=0
$$

for every $\alpha(0 \leqq|\alpha| \leqq 2 s-1)$ and being dependent on L and independent of u.

Now consider an elliptic system of linear partial differential equations

$$
\begin{equation*}
\sum_{j=1}^{p} l_{i j} u_{j}=0 \quad(i=1, \cdots, p) \tag{2}
\end{equation*}
$$

in unknown functions u_{1}, \cdots, u_{p}, where $l_{i j}$ is a linear partial differential operator with variable coefficients continuous in \mathfrak{D}. Carleman [1] proved the following.

In the case when in (2), $p=2, n=2$ and $l_{i j}(i, j=1,2)$ are of order 1 , each solution u_{j} of (2), satisfying

$$
\lim _{r \rightarrow 0} \frac{u_{j}(x)}{r^{k}}=0 \quad \text { for any positive integer } k
$$

vanishes identically in \mathfrak{D}.
In this note, we shall give a result similar to Pederson's theorem for a system (2) under some additional conditions.
2. Before stating our result, we prove the following

Lemma. Let $L(x, D)=\sum_{\alpha} a_{\alpha}(x) D^{\alpha}$ be an elliptic linear partial differential operator of order $2 s$. Then there exist positive constants m, r_{0} and k_{0} such that, if $0<r \leqq r_{0}$ and $k_{0} \leqq k$,

$$
L(x, D) \frac{e^{2 r^{2}}}{r^{2 k}} \geqq m \lambda^{2 s} \frac{e^{2 r^{2}}}{r^{2(k-s)}} \quad \text { for any } \lambda<0 \text {, }
$$

where m, r_{0} and k_{0} are independent of λ and, in particular, k_{0} depends only on $L(x, D)$.

Proof. It is easy to see that
and

$$
\begin{equation*}
\frac{d^{q}}{d \rho^{q}} \frac{e^{2 \rho}}{\rho^{k}}=\left(\lambda^{q} \frac{1}{r^{2 k}}+\sum_{i=1}^{q} \lambda^{q-l}(-1)^{2}\left(\frac{q}{l}\right) k(k+1) \cdots(k+l-1) \frac{1}{r^{2 k+1)}}\right) e^{e^{r r^{2}}}, \tag{4}
\end{equation*}
$$

where $\rho=r^{2}$ and $\beta+2 \gamma$ means the sum of vectors ($\beta_{1}, \cdots, \beta_{n}$) and $\left(2 \gamma_{1}, \cdots, 2 \gamma_{n}\right)$. In \mathfrak{D}, we consider a closed sphere with center 0 and of radius r_{1}. Since $L(x, D)$ is elliptic, we can find a positive number c such that

$$
\sum_{|a|=2 s} a_{\alpha}(x) x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \geqq c r^{2 s}
$$

for $r=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2} \leqq r_{2}$. From now on, we assume $0<r \leqq r^{\prime}=\operatorname{Min}\left(r_{1}, r_{2}\right)$ and $\lambda<0$. If q is even, each term on the right hand side of (4) is positive. Hence

$$
\begin{aligned}
& L(x, D) \frac{e^{\lambda r^{2}}}{r^{2 k}}=\sum_{|\alpha|=2 s} a_{\alpha}(x) D^{\alpha} \frac{e^{\lambda r^{2}}}{r^{2 k}}+\sum_{|\alpha| \leq 2 s-1} a_{\alpha}(x) D^{\alpha} \frac{e^{\lambda r^{2}}}{r^{2 k}} \\
& =\sum_{\left|\alpha_{1}\right|=2 s} a_{\alpha}(x) \alpha_{1}!\cdots \alpha_{n}!\frac{d^{2 s}}{d \rho^{2 s}} \frac{e^{\lambda_{\rho}}}{\rho^{k}} \frac{2^{2 s}}{\alpha_{1}!\cdots \alpha_{n}!} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \\
& +\sum_{|\alpha|=2 s} a_{\alpha}(x) \alpha_{1}!\cdots \alpha_{n}!\sum_{q=1}^{2 s-1} \frac{d^{q}}{d \rho^{q}} \frac{e^{\alpha \rho}}{\rho^{k}}\left(\sum_{\substack{| |+\gamma=q \\
\beta+2 r=\alpha}} \frac{2^{|\beta|}}{\beta_{1}!\cdots \beta_{n}!\gamma_{1}!\cdots \gamma_{n}!} x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}\right) \\
& +\sum_{|\alpha| \sum_{2} 2 s-1} a_{\alpha}(x) \alpha_{1}!\cdots \alpha_{n}!\sum_{q=1}^{|\alpha|} \frac{d^{q}}{d \rho^{q}} \frac{e^{2 \rho}}{\rho^{k}}\left(\sum_{\substack{|\beta+\eta r==\\
\beta+2\rangle=\alpha}} \frac{2^{|\beta|}}{\beta_{1}!\cdots \beta_{n}!\gamma_{1}!\cdots \gamma_{n}!} x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}\right) \\
& \geqq 2^{2 s} c r^{2 s} \frac{d^{2 s}}{d \rho^{2 s}} \frac{e^{\lambda \rho}}{\rho^{k}} \\
& -M_{1}(2 s+1)^{n-1}(2 s)!\sum_{q=s}^{2 s-1}\left|\frac{d^{q}}{d \rho^{q}} \frac{e^{2 \rho}}{\rho^{k}}\right|(2 n r)^{2 q-2 s} \\
& -M_{2} \sum_{|\alpha| \leq 2 s-1}(|\alpha|+1)^{n-1}|\alpha|!\sum_{q=\left[\frac{|\alpha|}{2}\right]+1}^{|\alpha|}\left|\frac{d^{q}}{d \rho^{q}} \frac{e^{\lambda \rho}}{\rho^{k}}\right|(2 n r)^{2 q-|\alpha|},
\end{aligned}
$$

where $M_{1}=\sup _{\substack{| | \mid=2 s \\ r \leq r_{1}}}\left|a_{\alpha}(x)\right|$ and $M_{2}=\sup _{\substack{\mid \alpha \leq s s-1 \\ r \leq r_{1}}}\left|a_{\alpha}(x)\right|$. Setting $m=2^{2 s} c$ and K_{i} $=M_{i}(2 s+1)^{n-1}(2 s)!(i=1,2)$, we get

$$
L(x, D) \frac{e^{\lambda r 2}}{r^{2 k}}-m \lambda^{2 s} \frac{e^{\lambda r 2}}{r^{2(k-s)}}
$$

$$
\geqq m \sum_{l=1}^{2 s}|\lambda|^{2 s-l}\binom{2 s}{l} k(k+1) \cdots(k+l-1) \frac{1}{r^{2(k+l-s)}}
$$

$$
-K_{1} \sum_{q=s}^{2 s-1}\left(\frac{|\lambda|^{q}}{\rho^{k}}+\sum_{l^{\prime}=1}^{q}|\lambda|^{q-l^{\prime}}\left(\frac{q}{l^{\prime}}\right) k(k+1) \cdots\left(k+l^{\prime}-1\right) \frac{1}{r^{2\left(k+l^{\prime}+s-q\right)}}\right.
$$

$$
-K_{2} \sum_{|\alpha| \leqslant 2 s-1} \sum_{q=\left[\frac{|\alpha|}{2}\right]+1}^{|\alpha|}\left(\frac{|\lambda|^{q}}{\rho^{k}}+\sum_{l^{\prime \prime}=1}^{q}|\lambda|^{q-l^{\prime \prime}}\binom{q}{l^{\prime \prime}} k(k+1) \cdots\left(k+l^{\prime \prime}-1\right)\right.
$$

$$
\left.\times \frac{1}{r^{2\left(k+l^{\prime \prime}\right)+|\alpha|-2 q}}\right)
$$

In the right hand side of this inequality, we compare the coefficient of each term in the first sum with that of $|\lambda|^{q-l^{\prime \prime}}$ in the third sum. If $2 s-l=q-l^{\prime \prime}$, then $2(k+l-s)>2\left(k+l^{\prime \prime}\right)+|\alpha|-2 q$ for any $\alpha(|\alpha| \leqq 2 s-1)$ and any $q\left(\left[\frac{|\alpha|}{2}\right]+1 \leqq q \leqq|\alpha|\right)$. Therefore, we can choose a sufficiently small number $r_{0}\left(<r^{\prime}\right)$ such that, when $0<r \leqq r_{0}$,

$$
\begin{aligned}
L(x, D) & \frac{e^{2 r 2}}{r^{2 k}}-m \lambda^{2 s} \frac{e^{\lambda r^{2}}}{r^{2(k-s)}} \\
& \geqq \frac{m}{2} \sum_{l=1}^{2 s}|\lambda|^{2 s-l}\binom{2 s}{l} k(k+1) \cdots(k+l-1) \frac{1}{r^{2(k+l-s)}} \\
& \quad-K_{1} \sum_{q=s}^{2 s-1}\left(\frac{|\lambda|^{q}}{\rho^{k}}+\sum_{l^{\prime}=1}^{q}|\lambda|^{q-l^{\prime}}\binom{q}{l^{\prime}} k(k+1) \cdots\left(k+l^{\prime}-1\right) \frac{1}{r^{2\left(k+l^{\prime}+s-q\right)}} .\right.
\end{aligned}
$$

In the above, we compare the coefficient of $|\lambda|^{2 s-l}$ of the first sum with that of the second sum. If $2 s-l=q-l^{\prime}$, then $2(k+l-s)$ $=2\left(k+l^{\prime}+s-q\right)$ and $l^{\prime} \leqq l-1$. Hence we have the required inequality for $k \geqq k_{0}$ by taking k_{0} suitably.
3. We consider linear differential operators $\left(l_{i j}\right)(i, j=1, \cdots, p)$ with variable coefficients defined in \mathfrak{D}. Every $l_{i j}$ can be expressed as follows:

$$
l_{i j}=l_{i j}(x, D)=\sum_{\alpha} a_{\alpha}^{i j}(x) D^{\alpha} .
$$

For an arbitrary real n-dimensional vector $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)$, there exists a one to one correspondence between operators $l_{i j}(x, D)$ and polynomials $l_{i j}(x, \xi)=\sum_{\alpha} a_{\alpha}^{i j}(x) \xi^{\alpha}$ in ξ.

Assume that there are $2 p$ integers $s_{1}, \cdots, s_{p}, t_{1}, \cdots, t_{p}$ such that the order of $l_{i j}$ does not exceed $s_{i}+t_{j}$. Denote by $l_{i_{j}}^{\prime}(x, \xi)$ the sum of terms in $l_{i j}(x, \xi)$ which are exactly of order $s_{i}+t_{j}$ with respect to ξ_{1}, \cdots, ξ_{n}, where it is to be understood that $l_{i,}(x, \xi) \equiv 0$ if the order of $l_{i j}(x, \xi)$ in ξ is less than $s_{i}+t_{j}$. The determinant $L(x, \xi)$ of the charac-
teristic matrix
(5)

$$
\left(l_{i j}^{\prime}(x, \xi)\right)
$$

of $\left(l_{i j}\right)$ is a polynomial in ξ which is homogeneous of degree $\sum_{i=1}^{p}\left(s_{i}+t_{i}\right)$.
The system

$$
\sum_{j=1}^{\infty} l_{i j}(x, D) u_{j}=0, \quad i=1, \cdots, p
$$

is called elliptic, if there exist s_{i} and $t_{i}(i=1, \cdots, p)$ such that $L(x, \xi)$ is positive definite at every point x in \mathfrak{D}. This definition is due to Douglis and Nirenberg [2].

We say that the elliptic system in the above sense is (*)-elliptic, if it satisfies the following condition:
(*) When $q \neq j$, the order of

$$
\sum_{i=1}^{p} L_{i q}(x, D) l_{i j}(x, D) \quad(q, j=1, \cdots, p)
$$

is less than $\sum_{i=1}^{p}\left(s_{i}+t_{i}\right)$, where $L_{i q}(x, \xi)$ is the cofactor of $l_{i q}^{\prime}(x, \xi)$ of the determinant of (5).

Example. Consider a system

$$
\left\{\begin{array}{l}
\frac{\partial^{3} u_{1}}{\partial x_{1}^{3}}+\frac{\partial^{2} u_{2}}{\partial x_{2}^{2}}+a_{1}(x) \frac{\partial u_{1}}{\partial x_{1}}+a_{2}(x) \frac{\partial u_{1}}{\partial x_{2}}+b_{1}(x) \frac{\partial u_{2}}{\partial x_{1}}+b_{2}(x) \frac{\partial u_{2}}{\partial x_{1}}+a_{3}(x) u_{1} \\
-\frac{\partial^{2} u_{1}}{\partial x_{2}^{2}}+\frac{\partial u_{2}}{\partial x_{1}}+c(x) u_{1}+d(x) u_{2}=0
\end{array} \quad+b_{3}(x) u_{2}=0, ~ 又\right.
$$

in a domain of R^{2}. Taking $s_{1}=2, s_{2}=1, t_{1}=1, t_{2}=0$, we see our system is $(*)$-elliptic in our sense. It is easy to verify that Carleman's system stated in $\S 1$ is also (*)-elliptic.

Now we can state the
Theorem. Let

$$
\begin{equation*}
\sum_{j=1}^{p} l_{i j}(x, D) u_{j}=0, \quad i=1, \cdots, p \tag{6}
\end{equation*}
$$

be an (*)-elliptic system whose coefficients have continuous derivatives of order $\sum_{i=1}^{\infty}\left(s_{i}+t_{i}\right)$ in \mathfrak{D} and let $u_{j}(x)(j=1, \cdots, p)$ be solutions of the above system. If each $u_{i}(x)(1 \leqq i \leqq p)$ is constant-signed, non-negative or non-positive, in \mathfrak{D}, then there exists a number N depending only on $\left(l_{i_{j}}\right)$ such that each $u_{i}(x)$ vanishes identically in \mathfrak{D} provided that

$$
\lim _{r \rightarrow 0} \frac{D^{\alpha} u_{j}(x)}{r^{N}}=0, \quad i=1, \cdots, p
$$

for every $\alpha\left(|\alpha| \leqq \sum_{i=1}^{p}\left(s_{i}+t_{i}\right)-1\right)$.
Proof. Operating $L_{i q}(x, D)$ to the left hand side of (6) and summing up for i, we have

$$
\begin{equation*}
\sum_{i} L_{i q}(x, D) l_{i q}(x, D) u_{q}+\sum_{\substack{i, j \\ j \neq q}} L_{i q}(x, D) l_{i j}(x, D) u_{j}=0 \tag{7}
\end{equation*}
$$

By the condition (*), (7) can be written in the form

$$
\begin{equation*}
L(x, D) u_{q}+\sum_{j=1}^{p} R_{j q}(x, D) u_{j}=0 \tag{8}
\end{equation*}
$$

where $R_{j q}(x, D)$ is a linear partial differential operator whose order is less than $\sum_{i=1}^{p}\left(s_{i}+t_{i}\right)$ and $L(x, \xi)$ is the determinant of (5). Put

$$
v_{q}=\left\{\begin{aligned}
u_{q}, & \text { if } u_{q} \geqq 0, \\
-u_{q}, & \text { if } u_{q} \leqq 0 .
\end{aligned}\right.
$$

From (8), we get

$$
\sum_{q=1}^{p} L(x, D) v_{q}=\sum_{q=1}^{p} R_{q}(x, D) v_{q}
$$

where $R_{q}(x, D)$ is a linear partial differential operator with order less than $\sum_{i=1}^{p}\left(s_{i}+t_{i}\right)$. We put

$$
L(x, D)-R_{q}(x, D)=L_{q}(x, D)
$$

and denote by $\bar{L}_{q}(x, D)$ the adjoint operator of $L_{q}(x, D)$. Since every $\bar{L}_{q}(x, D)$ is also an elliptic operator with coefficients continuous in \mathfrak{D} and has a principal part, common with $L_{q}(x, D)$, of order $\sum_{i=1}^{p}\left(s_{i}+t_{i}\right)$, we can apply our lemma to $\bar{L}_{q}(x, D)$ and we see that there exist numbers m_{q}, r_{q} and k_{0} such that, if $\lambda<0,0<r \leqq r_{q}$ and $k_{0} \leqq k$, it holds

$$
\bar{L}_{q}(x, D) \frac{e^{\lambda r^{2}}}{r^{2 k}} \geqq m_{q} \lambda_{i=1}^{p} \sum_{i=1}^{p}\left(s_{i}+t_{i}\right) \frac{e^{\lambda r^{2}}}{r^{2 k-\sum_{i=1}^{p}\left(s_{i}+t_{i}\right)}} .
$$

Putting $r_{0}=\min _{1 \leqq q \leqq p} r_{q}$ and $m_{0}=\min _{1 \leqq q \leqq p} m_{q}$, we have

$$
\begin{equation*}
\bar{L}_{q}(x, D) \frac{e^{\lambda r^{2}}}{r^{2 k}} \geqq m_{0} \lambda_{i=i}^{p} \sum_{i=i}^{p}\left(s_{i}+t_{i}\right) \frac{e^{\lambda r 2}}{r^{2 k-\sum_{i=1}^{p}\left(s_{i}+t_{i}\right)}} \tag{9}
\end{equation*}
$$

for all q, if $\lambda<0,0<r \leqq r_{0}$ and $k_{0} \leqq k$. On the other hand, let $\zeta(x)$ be an infinitely differentiable function with compact carrier in $|x|$ $<r_{0}$ such that $\zeta(x)=1$ in $|x| \leqq \frac{r_{0}}{2}$. We put $w_{q}(x)=\zeta(x) v_{q}(x)$.

By Green's formula, we get

$$
\begin{aligned}
& \int_{\bullet \leq r \leq r_{0}} w_{q}(x) \\
&= \int_{q}(x, D) \frac{e^{\lambda r 2}}{r^{2 k}} d V_{x} \\
& e^{\lambda \leq_{r \leq 2}} L_{q}(x, D) w_{q} d V_{x} \\
&+\int_{r=0}^{2 k} K_{q}\left(D^{\beta} \frac{e^{\lambda r 2}}{r^{2 k}}, D^{r} w_{q}(x)\right) d S_{x}
\end{aligned}
$$

where $d V_{x}$ and $d S_{x}$ denote the volume element and the area element respectively and further $K_{q}\left(D^{\beta} \frac{e^{\lambda r^{2}}}{r^{2 k}}\right.$, $\left.D^{r} w_{q}(x)\right)$ is a sum of products of $D^{\beta} \frac{e^{2 r^{2}}}{r^{2 k}}\left(|\beta| \leqq \sum_{i=1}^{p}\left(s_{i}+t_{i}\right)-1\right), D^{r} w_{q}(x)\left(|\beta+\gamma| \leqq \sum_{i=1}^{p}\left(s_{i}+t_{i}\right),|\gamma| \leqq \sum_{i=1}^{p}\left(s_{i}+t_{i}\right)\right.$ $-1)$ and bounded functions. Put $N=2\left(k_{0}+\sum_{i=1}^{n}\left(s_{i}+t_{i}\right)\right)$. If

$$
\lim _{r \rightarrow 0} \frac{D^{\alpha} u_{q}(x)}{r^{N-|\alpha|}}=0 \quad \text { for } \quad|\alpha| \leqq \sum_{i=1}^{p}\left(s_{i}+t_{i}\right)-1
$$

then, from (3),

$$
\lim _{\theta \rightarrow 0} K_{q}\left(D^{\beta} \frac{e^{\lambda r^{2}}}{r^{2 k}}, D^{r} w_{q}(x)\right)_{r=c}=0
$$

Thus we obtain

$$
\begin{equation*}
\int_{r \leqq r_{0}} \bar{L}_{q}(x, D) \frac{e^{\lambda r^{2} 2}}{r^{2 k}} w_{q}(x) d V_{x} \leqq \int_{r \leqq r_{0}} \frac{e^{\lambda r^{2} 2}}{r^{2 k}} L_{q}(x, D) w_{q} d V_{x} \tag{10}
\end{equation*}
$$

Since $L_{q}(x, D) w_{q}=L_{q}(x, D) v_{q}$ in $|x|<\frac{r_{0}}{2}$ and since (9) holds, the above inequality (10) implies

$$
\begin{aligned}
& m_{0} \lambda_{i=1}^{p=1}\left(s_{i}+t_{i}\right) \quad e^{\lambda\left(\frac{r_{0}}{2}\right)^{2}} \sum_{q=1}^{p} \int_{r \leq \frac{r_{0}}{2}} \frac{v_{q}}{r^{2 k_{0}-} \frac{\substack{p \\
i=1}}{\substack{s_{i}+t_{i}}}} d V_{x} \\
& \underset{\frac{r_{0}}{2} \leqq r \leq r_{0}}{\leqq} e^{2 r^{2}} \frac{\sum_{q=1}^{p} L_{q}(x, D) w_{q}}{r^{2 k_{0}}} d V_{x} .
\end{aligned}
$$

Dividing both sides by $m_{0} \lambda_{i=1}^{p}\left(s_{i}+t_{i}\right) ~ e^{\lambda\left(\frac{r_{0}}{2}\right)^{2}}$ and letting $\lambda \rightarrow-\infty$, we have

$$
\int_{r \leq \frac{r_{0}}{2}} \frac{\sum_{q=1}^{p} v_{q}}{r^{2 k_{0}-\sum_{i=1}^{p}\left(s_{i}+t_{i}\right)}} d V_{x} \leqq 0 .
$$

Since every $v_{q}(x)$ is non-negative, we conclude that $v_{q}(x)$ vanishes in $|x|<\frac{r_{0}}{2}$, that is, $u_{q}(x)=0$ in $|x|<\frac{r_{0}}{2}(q=1, \cdots, p)$. By a classical procedure of continuation, we see the vanishing of all $u_{q}(x)$ in the whole domain.

Remark. In the case $p=1$, the above proof gives an alternating proof of Pederson's theorem.

References

[1] T. Carleman: Sur les systèmes linéaires aux dérivées partielles du premier ordre à deux variables, C. R. Paris, 197, 471-474 (1933).
[2] A. Douglis and L. Nirenberg: Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math., 8, 503-538 (1955).
[3] A. Friedman: Uniqueness properties in the theory of differential operators of elliptic type, Journ. Math. Mech., 7, 61-67 (1958).
[4] R. N. Pederson: On the order of zeros of one-signed solutions of elliptic equations, Journ. Math. Mech., 8, 193-196 (1959).

