10. A Converse Theorem on the Summability Methods

By Kazuo Ishiguro
Department of Mathematics, Hokkaido University, Sapporo
(Comm. by Kinjirô Kunugi, M.J.A., Jan. 12, 1963)

§1. In a recent paper the author proved the following
Theorem 1. If $\left\{s_{n}\right\}$ is summable (l) to s, then it is summable (L) to the same sum. There is a sequence summable (L) but not summable (l). (See [5].)

Here we prove a converse of this theorem:
Theorem 2. If $\left\{s_{n}\right\}$ is summable (L) to s, and if further $s_{n} \geq-M$, then it is summable (l) to the same sum.

The latter theorem corresponds to the following celebrated theorem of Hardy and Littlewood:

Theorem 3. If $\left\{s_{n}\right\}$ is Abel summable to s, and if further $s_{n} \geq-M$, then it is Cesàro summable $(C, 1)$ to the same sum. (See [3], [2] Theorem 94.)

Here we use the same notations as before. When a sequence $\left\{s_{n}\right\}$ is given we define the method L as follows: If

$$
\frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1}
$$

tends to a finite limit s as $x \rightarrow 1$ in the open interval $(0,1)$, we say that $\left\{s_{n}\right\}$ is summable (L) to s and write $\lim s_{n}=s(L)$. (See [1].)

On the other hand we define the method l as follows: If

$$
\begin{aligned}
& t_{0}=s_{0}, t_{1}=s_{1} \\
& t_{n}=\frac{1}{\log n}\left(s_{0}+\frac{s_{1}}{2}+\cdots+\frac{s_{n}}{n+1}\right) \quad(n \geq 2)
\end{aligned}
$$

tend to a finite limits as $n \rightarrow \infty$, we say that $\left\{s_{n}\right\}$ is summable (l) to s and write $\lim s_{n}=s(l)$. (See [2] p.59, p. 87.)
§2. Proof of Theorem 2. For the proof we use the method of Karamata [6]. (See also [2] pp. 156-158, [7] pp. 55-57.) Without loss of generality we may assume that the s_{n} are non-negative, for otherwise we would work with the sequence $s_{n}+M$ which is nonnegative. At first we shall prove two lemmas.

Lemma 1. Let $g(x)$ be continuous except at most for one discontinuity of the first kind in the closed interval $[0,1]$. Let further $g(x)$ be bounded in $[0,1]$, and $g(x)=g(x+0)$ and $g(1)=g(1-0)$. Then to every positive ε, there exist two polynomials, $p(x)$ and $q(x)$, such that

$$
\begin{equation*}
q(x) \leq g(x) \leq p(x) \quad \text { for } \quad 0 \leq x \leq 1 \tag{1}
\end{equation*}
$$

and
(2)

$$
0 \leq g(x)-q(x) \leq \varepsilon, \quad 0 \leq p(x)-g(x) \leq \varepsilon
$$

for $0<\sigma \leq x \leq 1$, where σ is an appropriate positive constant, $0<\sigma<1$.
Proof of Lemma 1. At first let $g(x)$ be continuous. Then $g(x)$ $\pm \frac{\varepsilon}{2}$ is continuous and by Weierstrass' Approximation Theorem (see [4] p. 228, [7] p.55) there exist two polynomials $p(x), q(x)$ such that

$$
\begin{aligned}
& \left|q(x)-\left(g(x)-\frac{\varepsilon}{2}\right)\right| \leq \frac{\varepsilon}{2} \\
& \left|p(x)-\left(g(x)+\frac{\varepsilon}{2}\right)\right| \leq \frac{\varepsilon}{2} \quad \text { for } \quad 0 \leq x \leq 1
\end{aligned}
$$

These two polynomials satisfy (1) and (2).
Next if $g(x)$ has a finite jump at $x=\xi, 0<\xi<1$, we construct two functions $g^{*}(x)$ and $g_{*}(x)$ continuous in the closed interval $[0,1]$ such that

$$
g_{*}(x) \leq g(x) \leq g^{*}(x) \quad \text { for } \quad 0 \leq x \leq 1,
$$

and

$$
g_{*}(x)=g(x)=g^{*}(x) \quad \text { for } \quad 0<\sigma \leq x \leq 1,
$$

where we may take $\sigma=\frac{1}{2}(1+\xi)$ for example. Then to every positive ε, there exist two polynomials, $p(x)$ and $q(x)$, such that

$$
q(x) \leq g_{*}(x), g^{*}(x) \leq p(x)
$$

$$
0 \leq g_{*}(x)-q(x) \leq \varepsilon, \quad 0 \leq p(x)-g^{*}(x) \leq \varepsilon
$$

for $0 \leq x \leq 1$. These two polynomials satisfy (1) and (2), whence the proof is complete.

Lemma 2. Let $g(x)$ be any function of the type prescribed in Lemma 1. Then

$$
\begin{equation*}
\lim _{x \rightarrow 1-0} \frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1} g\left(x^{n+1}\right)=s g(1) \tag{3}
\end{equation*}
$$

where

$$
s=\lim _{x \rightarrow 1-0} \frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1}
$$

Proof of Lemma 2. At first we shall prove (3) when $g(x)$ is a non-negative power of x, i. e. $g(x)=x^{c}(c \geq 0)$. In this case the left member of (3) is

$$
\begin{aligned}
& \lim _{x \rightarrow 1-0} \frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1} x^{c(n+1)} \\
= & \lim \frac{-1}{\log (1-x)} \sum \frac{s_{n}}{n+1} x^{(c+1)(n+1)} \\
= & \lim \frac{\log \left(1-x^{c+1}\right)}{\log (1-x)} \cdot \frac{-1}{\log \left(1-x^{c+1}\right)} \sum \frac{s_{n}}{n+1} x^{(c+1)(n+1)} \\
= & \lim _{x \rightarrow 1-0} \frac{\log \left(1-x^{c+1}\right)}{\log (1-x)} \cdot s=s=s \cdot 1^{c} .
\end{aligned}
$$

Hence (3) is true whenever $g(x)$ is a polynomial. To prove the general case we use Lemma 1. Since we have assumed s_{n} non-negative, we have

$$
\frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1} g\left(x^{n+1}\right) \leq \frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1} p\left(x^{n+1}\right)
$$

and

$$
\begin{aligned}
\varlimsup_{x \rightarrow 1-0} \frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1} g\left(x^{n+1}\right) & \leq \lim _{x \rightarrow 1-0} \frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1} p\left(x^{n+1}\right) \\
& =s p(1) \leq s\{g(1)+\varepsilon\}
\end{aligned}
$$

Inasmuch as ε may be taken arbitrary small, we have

$$
\varlimsup_{x \rightarrow 1-0} \frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1} g\left(x^{n+1}\right) \leq s g(1)
$$

Similarly we get

$$
\lim _{x \rightarrow 1-0} \frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1} g\left(x^{n+1}\right) \geq s g(1)
$$

whence the proof is complete.
We shall now put

$$
g(x)=\left\{\begin{array}{ccc}
0 & \text { for } & 0 \leq x<\frac{1}{e} \\
\frac{1}{x} & \text { for } & \frac{1}{e} \leq x \leq 1
\end{array}\right.
$$

Then we get $g(1)=1$, and further

$$
\begin{aligned}
& \qquad g\left(x^{n+1}\right)=0 \text { if } x^{n+1}<\frac{1}{e} \text {, } \\
& \text { i. e. if } n+1>\frac{1}{\log \frac{1}{x}} .
\end{aligned}
$$

Thus from (3)

$$
\begin{aligned}
& \lim _{x \rightarrow 1-0} \frac{-1}{\log (1-x)} \sum_{n \leq \frac{1}{\log \frac{1}{x}}-1} \frac{s_{n}}{n+1} x^{n+1} \cdot \frac{1}{x^{n+1}} \\
& =\lim _{x \rightarrow 1-0} \frac{-1}{\log (1-x)} \sum_{n \leq \frac{1}{\log \frac{1}{x}}-1} \frac{s_{n}}{n+1}=s .
\end{aligned}
$$

If we put $x=e^{-\frac{1}{N}}$, we have

$$
\lim _{N \rightarrow \infty} \frac{-1}{\log \left(1-e^{-\frac{1}{N}} \sum_{n=0}^{N-1} \frac{s_{n}}{n+1}=s\right.}
$$

Since

$$
\lim _{N \rightarrow \infty} \frac{-\log \left(1-e^{-\frac{1}{N}}\right)}{\log N}=1
$$

we get

No. 1]

$$
\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{s_{n}}{n+1}=s
$$

Since $\lim _{N \rightarrow \infty} \frac{\log N}{\log (N-1)}=1$, we have $\lim _{n \rightarrow \infty} s_{n}=s(l)$.
This completes the proof of Theorem 2.

References

[1] D. Borwein: A logarithmic method of summability, J. London Math. Soc., 33, 212-220 (1958).
[2] G. H. Hardy: Divergent Series, Oxford (1959).
[3] G. H. Hardy and J. E. Littlewood: Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive, Proc. London Math. Soc., (2) 13, 174-191 (1914).
[4] E. W. Hobson: The Theory of Functions of a Real Variable and the Theory of Fourier Series, Vol. II, Cambridge (1926).
[5] K. Ishiguro: On the summability methods of logarithmic type, Proc. Japan Acad., 38, 703-705 (1962).
[6] J. Karamata: Neuer Beweis und Verallgemeinerung der Tauberschen Sätze, welche die Laplacesche und Stieltjessche Transformation betreffen, J. Reine Angew. Math., 164, 27-39 (1931).
[7] O. Szász: Introduction to the Theory of Divergent Series, Cincinnati (1952).

