27. On Conditionally Hypoelliptic Properties of Partially Hypoelliptic Operators

By Minoru Yamamoto
Department of Mathematics, Okayama University
(Comm. by Kinjirô Kunugi, m.J.A., Feb. 12, 1963)

1. Introduction. Recently L. Gårding and B. Malgrange [2,3] have introduced the notions of partial hypoellipticity, partial ellipticity and conditional ellipticity. J. Friberg [1] and L. Hörmander [6] proved the fact that the solutions of $P(D) u=0$ is hypoanalytic of type σ in a fixed direction when $P(\zeta)$ is a polynomial of finite type σ in the same direction. J. Friberg also expected in his paper [1] that if $P(D)$ is partially hypoelliptic of type σ in some indepentent variables then the operator $P(D)$ have conditionally hypoelliptic properties in the same variables. (An operator $P(D)$ will be said to have a conditionally hypoelliptic property of type σ in x^{\prime} if any solution $u \in A_{1\left(x^{\prime \prime}\right)} \cap C^{\infty}$ of $P(D) u=f\left(f \in A_{1(x)}\right)$ belongs to $A_{\sigma(x)}$. See Def. 2.2.) The object of this note is to give a proof of above fact. The method is based on the idea of Gårding and Malgrange [2]. As the proof is somewhat mazy, details will be published later in the Osaka Mathematical Journal. I should like to thank Prof. M. Nagumo for his kind criticism during the preparation of this paper.
2. Algebraic considerations. Let $P(D)$ be a linear partial differential operator with constant coefficients operating on functions $u(x)$ defined in some open set $\Omega \subset R_{x^{\prime}}^{m} \times R_{x^{\prime \prime}}^{n}\left(x=\left(x^{\prime}, x^{\prime \prime}\right)=\left(x_{1}^{\prime}, \cdots, x_{m}^{\prime}\right.\right.$, $\left.x_{1}^{\prime \prime}, \cdots, x_{n}^{\prime \prime}\right) x^{\prime} \in R^{m}, x^{\prime \prime} \in R^{n}$). By α we shall denote a multi-integer ($\alpha^{1^{\prime}}, \cdots, \alpha^{m^{\prime}}, \alpha^{1^{\prime \prime}}, \cdots, \alpha^{n^{\prime \prime}}$) where $\alpha^{i^{\prime}}$ and $\alpha^{j^{\prime \prime}}$ are non-negative integers, the length of α is denoted by $|\alpha|=\alpha^{1^{\prime}}+\cdots+\alpha^{n^{\prime \prime}}$. Defining $D_{x^{\prime} j}$ $=-\sqrt{-1} \partial / \partial x_{j}^{\prime}, D_{x^{\prime \prime} j}=-\sqrt{-1} \partial / \partial x_{j}^{\prime \prime}$ we set $D^{\alpha}=D_{x^{\prime}}^{\alpha \prime} \cdot D_{x^{\prime \prime}}^{\alpha^{\prime \prime}}=D_{x_{1}^{\prime}}^{\alpha 1^{\prime}} \cdots D_{x^{\prime}{ }_{m}}^{\alpha m^{\prime}}$. $D_{x^{\prime \prime} 1}^{\alpha 1 \prime \prime} \ldots D_{x^{\prime \prime} n}^{\alpha n^{\prime \prime}}$. By $P(\zeta)$ we mean the characteristic polynomial belonging to $P(D)$, and $V(P)$ denotes the algebraic variety in $C^{m} \times C^{n}$ defined by $\{\zeta ; P(\zeta)=0\} \subset C^{m} \times C^{n}$.

Definition 2.1. The operator $P(D)$ (or $P(\zeta)$) is said to be partially hypoelliptic of type σ in x^{\prime} if the following condition is satisfied.

There exist positive constants C_{0} and σ (depending only on P) such that

$$
\begin{equation*}
\left|R e \zeta^{\prime}\right| \leqq C_{0}\left(1+\left|I m \zeta^{\prime}\right|+\left|\zeta^{\prime \prime}\right|\right)^{\sigma} \quad(\zeta \in V(P)) \tag{2.1}
\end{equation*}
$$

or equivalently there exist positive constants C_{0}^{\prime} and σ for sufficiently large A

$$
\begin{equation*}
\left|R e \zeta^{\prime}\right| \leqq C_{0}^{\prime}\left(\left|I m \zeta^{\prime}\right|+\left|\zeta^{\prime \prime}\right|\right)^{\bullet} \quad\left(\zeta \in V(P) \text { and }\left|R e \zeta^{\prime}\right|>A\right) \tag{2.1}
\end{equation*}
$$

Remark 1. As in the proof of Lemma 3.9 in Hörmander [5],
the best possible choice of above σ is always a rational number, therefore we may assume here $\sigma=r / s(\geqq 1)$ with mutually prime positive integer r and s.

Definition 2.2. A function $u(x) \in C^{\infty}(\Omega)$ is said to be hypoanalytic of type σ in Ω (we denote it $u(x) \in A_{\sigma(x)}(\Omega)$) if for every compact subset K of Ω there exists a positive constant C depending on K and u such that

$$
\begin{equation*}
\operatorname{Max}_{x \in K} .\left|D^{p} u(x)\right| \leqq C^{p+1}(p!)^{\sigma} \quad p=0,1,2, \cdots \tag{2.2}
\end{equation*}
$$

is valid, where $\left|D^{p} u(x)\right|^{2}=\sum_{|\alpha|=p} \frac{p!}{\alpha^{\prime}!\alpha^{\prime \prime}!}\left|D_{x^{\prime}}^{\alpha^{\prime}} D_{x^{\prime \prime}}^{\alpha^{\prime \prime}} u\right|^{2}$.
Lemma 2.1. $P\left(\zeta^{\prime}\right)\left(\zeta^{\prime} \in C^{m}\right)$ is hypoelliptic of type σ : i.e.

$$
\begin{equation*}
\left|R e \zeta^{\prime}\right| \leqq C\left(1+\left|\operatorname{Im} \zeta^{\prime}\right|\right)^{\sigma} \quad\left(\zeta^{\prime} \in V(p)\right) \tag{2.3}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sum_{|\alpha|>0}\left|P^{(\alpha)}\left(\xi^{\prime}\right)\right|^{2}\left|\xi^{\prime}\right|^{2|\alpha| / \sigma} \leqq C^{\prime} \sum_{|\alpha| \geq 0}\left|P^{(\alpha)}\left(\xi^{\prime}\right)\right|^{2} \quad\left(\xi^{\prime} \in R^{m}\right) \tag{2.4}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\sum_{|\alpha|>0}\left|P^{(\alpha)}\left(\xi^{\prime}\right)\right|^{2}\left|\xi^{\prime}\right|^{2|\alpha| / \sigma} \leqq C^{\prime \prime}\left|P\left(\xi^{\prime}\right)\right|^{2} \quad\left(\left|\xi^{\prime}\right|>A^{\prime}\right) \tag{2.4}
\end{equation*}
$$

Since $P(\zeta)=P\left(\zeta^{\prime}, \zeta^{\prime \prime}\right)$ is a polynomial in $C^{m} \times C^{n}, P$ can be written as a finite sum;

$$
\begin{equation*}
P\left(\zeta^{\prime}, \zeta^{\prime \prime}\right)=P_{0}\left(\zeta^{\prime}\right)+\sum_{|r|>0} P_{r}\left(\zeta^{\prime}\right) \cdot\left(\zeta^{\prime \prime}\right)^{r} \tag{2.5}
\end{equation*}
$$

where $\gamma=\left(\gamma^{1}, \cdots, \gamma^{n}\right)$ with non negative integer γ^{i}. Then the following theorem is established.

Theorem 2.1. $P(\zeta)$ is partially hypoelliptic of type σ in x^{\prime} if and only if

$$
\begin{equation*}
\sum_{|\alpha+r| \geqq 0}\left|P_{\gamma}^{(\alpha)}\left(\xi^{\prime}\right)\right|^{2}\left|\xi^{\prime}\right|^{2|\alpha+\gamma| / \sigma} \leqq C_{1}\left(\left|P_{0}\left(\xi^{\prime}\right)\right|^{2}+1\right) \quad\left(\xi^{\prime} \in R^{m}\right) . \tag{2.6}
\end{equation*}
$$

Remark 2. If $P(\zeta)$ is partially hypoelliptic of type σ in x^{\prime} then by virtue of (2.1) $P_{0}\left(\zeta^{\prime}\right)\left(=P\left(\zeta^{\prime}, 0\right)\right.$) is hypoelliptic of type σ as a polynomial in ζ^{\prime}. Hence the following inequality is valid.

$$
\begin{equation*}
\sum_{|\alpha|>0}\left|P_{0}^{(\alpha)}\left(\xi^{\prime}\right)\right|\left|\xi^{\prime}\right|^{|\alpha| / \sigma} \leqq C_{2}\left|P_{0}\left(\xi^{\prime}\right)\right| \quad\left(\xi^{\prime} \in R^{m},\left|\xi^{\prime}\right|>A^{\prime}\right) \tag{2.7}
\end{equation*}
$$

It is easily verified that (2.6) is equivalent to

$$
\begin{equation*}
\sum_{\substack{\alpha+r|>0\\| \alpha \mid \geq 0}}\left|P_{r}^{(\alpha)}\left(\xi^{\prime}\right)\right|\left|\xi^{\prime}\right|^{|\alpha+r| / \sigma} \leqq C_{1}^{\prime}\left|P_{0}\left(\xi^{\prime}\right)\right| \quad\left(\left|\xi^{\prime}\right|>A^{\prime \prime}\right) \tag{2.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{\substack{|\alpha+\gamma|>0 \\|\alpha| \geq 0}}\left|P_{r}^{(\alpha)}\left(\xi^{\prime}\right)\right|^{2 r}\left|\xi^{\prime}\right|^{2 s|\alpha+\gamma|} \leqq C_{1}^{\prime \prime}\left(\left|P_{0}\left(\xi^{\prime}\right)\right|^{2 r}+1\right) \quad\left(\xi^{\prime} \in R^{m}\right) . \tag{2.6}
\end{equation*}
$$

Proof of Theorem 2.1. Writing $\quad \zeta^{\prime}=\xi^{\prime}+i \eta^{\prime} \quad\left(\xi^{\prime}, \eta^{\prime} \in R^{m} \quad i=\sqrt{-1}\right)$
(2.5) can be written as follows:

$$
\begin{gather*}
P(\zeta)=P_{0}\left(\xi^{\prime}\right)+\sum_{|\alpha|>0} C_{\alpha} P_{0}^{(\alpha)}\left(\xi^{\prime}\right)\left(i \eta^{\prime}\right)^{\alpha}+\sum_{|r|>0} \sum_{|\alpha|>0} C_{\alpha} P_{r}^{(\alpha)}\left(\xi^{\prime}\right)\left(i \eta^{\prime}\right)^{\alpha}\left(\zeta^{\prime \prime}\right)^{r} \tag{2.8}\\
\left(C=\max _{0 \leq|\alpha| \leq \rho} C_{\alpha}, \rho=\text { degree of } P\right) .
\end{gather*}
$$

Let $\eta^{\prime}=\left|\xi^{\prime}\right|^{1 / \sigma} \tilde{\eta}^{\prime}, \tilde{\zeta}^{\prime \prime}=\left|\xi^{\prime}\right|^{1 / \sigma} t \cdot \tilde{\zeta}^{\prime \prime}$ where $\tilde{\eta}^{\prime} \in R^{m}, \tilde{\zeta}^{\prime \prime} \in C^{n}\left(\left|\tilde{\zeta}^{\prime \prime}\right|=1\right), t \in C^{1}$ and $t \cdot \tilde{\zeta}^{\prime \prime}=\left(t \cdot \tilde{\zeta}_{1}^{\prime \prime}, \cdots, t \cdot \tilde{\zeta}_{n}^{\prime \prime}\right)$, then (2.8) is transformed into

$$
\begin{align*}
P(\zeta)=P_{0}\left(\xi^{\prime}\right) & +\sum_{|\alpha|>0} C_{\alpha} P_{0}^{(\alpha)}\left(\xi^{\prime}\right)\left|\xi^{\prime}\right|^{|\alpha| / \sigma}\left(i \tilde{\eta}^{\prime}\right)^{\alpha} \tag{2.9}\\
& +\sum_{|r|>0} \sum_{|\alpha| \geqq 0} C_{\alpha} P_{r}^{(\alpha)}\left(\xi^{\prime}\right)\left|\xi^{\prime}\right|^{|\alpha+\gamma| / \sigma}\left(i \tilde{\eta}^{\prime}\right)^{\alpha}\left(\tilde{\zeta}_{0}^{\prime \prime}\right)^{\gamma} t^{|\gamma|}
\end{align*}
$$

Now first of all fix the length of $\tilde{\eta}^{\prime}(=\varepsilon)$ suitably (for example; $\left.\left|\tilde{\eta}^{\prime}\right|=\frac{1}{2} \operatorname{Min}\left\{\left(C_{0}\right)^{-1},\left(\bar{C} C_{2}\right)^{-1}, 1\right\}\right)$ then according to (2.7) there exist constants C_{3}, C_{3}^{\prime} such that
(2.10) $\quad C_{3}\left|P_{0}\left(\xi^{\prime}\right)\right| \leqq\left.\left|P_{0}\left(\xi^{\prime}\right)+\sum_{|\alpha|>0} C_{\alpha} P_{0}^{(\alpha)}\left(\xi^{\prime}\right)\right| \xi^{\prime}\right|^{|\alpha| / \sigma}\left(i \tilde{\eta}^{\prime}\right)^{\alpha}\left|\leqq C_{3}^{\prime}\right| P_{0}\left(\xi^{\prime}\right) \mid$ ($\left.\left|\xi^{\prime}\right|>A^{\prime}\right)$.
Thus according to the condition (2.1)', if $t \in C^{1}$ is a solution of

$$
\begin{align*}
P_{0}\left(\xi^{\prime}\right) & +\sum_{|\alpha|>0} C_{\alpha} P_{0}^{(\alpha)}\left(\xi^{\prime}\right)\left|\xi^{\prime}\right|^{|\alpha| / \sigma}\left(i \tilde{\eta}^{\prime}\right)^{\alpha} \tag{2.11}\\
& +\sum_{|r|>0} \sum_{|\alpha| \geq 0} C_{\alpha} P_{r}^{(\alpha)}\left(\xi^{\prime}\right)\left|\xi^{\prime}\right|^{|\alpha+\tau| / \sigma}\left(i \tilde{\eta}^{\prime}\right)^{\alpha}\left(\tilde{\zeta}^{\prime \prime}\right)^{\gamma} t^{|r|}=0
\end{align*}
$$

then $|t|>C_{4}$ for some positive C_{4} uniformly in $\tilde{\eta}^{\prime} \in R^{m}\left(\left|\tilde{\eta}^{\prime}\right|=\varepsilon\right)$, $\tilde{\zeta}^{\prime \prime} \in C^{n}\left(\left|\tilde{\zeta}^{\prime \prime}\right|=1\right)$ and $\left|\xi^{\prime}\right|>A^{\prime}$. This shows that every solution τ of

$$
\begin{equation*}
\tau^{\rho}+\sum_{k=1}^{\rho} \sum_{|r|=\hbar}\left\{\frac{\sum_{|\alpha| \geq 0} C_{\alpha} P_{r}^{(\alpha)}\left(\xi^{\prime}\right)\left|\xi^{\prime}\right|^{|\alpha+\gamma| / \sigma}\left(i \tilde{\eta}^{\prime}\right)^{\alpha}}{\sum_{|\alpha| \geq 0} C_{\alpha} P_{0}^{(\alpha)}\left(\xi^{\prime}\right)\left|\xi^{\prime}\right|^{|\alpha| / \sigma}\left(i \tilde{\eta}^{\prime}\right)^{\alpha}}\right\}\left(\tilde{\xi}^{\prime \prime}\right)^{\tau} \tau^{\rho-k}=0 \tag{2.11}
\end{equation*}
$$

satisfies $|\tau|<1 / C_{4}$ uniformly.
This shows that every coefficient of $\tau^{k}(k=0, \cdots, \rho-1)$ is uniformly bounded. By virtue of uniformity in $\tilde{\zeta}^{\prime \prime}$, and (2.10)

$$
\left\{\sum_{|\alpha| \geq 0} P_{\gamma}^{(\alpha)}\left(\xi^{\prime}\right)\left|\xi^{\prime}\right|^{|\alpha+\gamma| / \sigma}\left(i \tilde{\eta}^{\prime}\right)^{\alpha}\right\} /\left|P_{0}\left(\xi^{\prime}\right)\right|
$$

is uniformly bounded in $\tilde{\eta}^{\prime}\left(\left|\tilde{\eta}^{\prime}\right|=\varepsilon\right)$ and $\xi^{\prime}\left(\left|\xi^{\prime}\right|>A\right)$.
Finally from the uniformity in $\tilde{\eta}^{\prime}\left(\left|\tilde{\eta}^{\prime}\right|=\varepsilon\right)$ the result follows.
It is easily verified by the well-known method that (2.6) implies (2.1) (cf. p. 28, [1]).
3. A priori estimates. In this section we introduce a new norm (similar as introduced in [1]) which depend on the operator $P(D)$ and δ with $0<\delta \leqq 1$.

Let K be any given relatively compact subset in $\Omega \subset R^{m} \times R^{n}$ with $\bar{K} \subset \Omega$. We then define the norm of $u \in C^{\infty}(\Omega)$ as follows:

$$
\begin{equation*}
|u, K|_{\delta}^{2}=\sum_{|r| \geq 0} \sum_{\alpha_{i}, k}\left\|Q_{r}^{\left(\alpha_{1}\right)}(D) \cdots Q_{r}^{(\alpha r)}(D) \cdot D^{k} u, K\right\|^{2} \delta^{2 \sigma k-2 \Sigma\left|\alpha_{i}\right|} \tag{3.1}
\end{equation*}
$$

where $Q_{\gamma}(D)=P_{r}\left(D_{x^{\prime}}\right) D_{x^{\prime \prime}}^{r}$ and $\|f, K\|$ denotes the usual L^{2} norm of f on K.

The sum is to be taken over all index sets $\alpha_{i}=\left(\alpha_{i}^{\prime}, \alpha_{i}^{\prime \prime}\right)$ with $0<\left|\alpha_{1}\right| \leqq\left|\alpha_{2}\right| \leqq \cdots \leqq\left|\alpha_{r}\right| \leqq \rho(\rho=\operatorname{deg} P)$ and over all integers k with $0=k<s \cdot \min \left|\alpha_{i}\right|=s\left|\alpha_{1}\right|$.
By the definition, the exponent of δ is always negative and the highest order derivatives of u contained in $|u, K|_{\delta}^{2}$ is smaller than $r \cdot \rho-(r-s)$. Therefore the following inequalities are valid.

$$
\begin{equation*}
C_{5} \sum_{0 \leqq k<s \cdot \rho}\left\|D^{k} u, K\right\|^{2} \leqq|u, K|_{1}^{2} \leqq C_{6} \sum_{|\alpha| \leq r \cdot \rho-(r-s)}\left\|D^{\alpha} u, K\right\|^{2} \tag{3.2}
\end{equation*}
$$

for some C_{5}, C_{6} which do not depend on u and δ.
(3.3) $\quad|u, K|_{1} \leqq|u, K|_{\delta}=|u, K|_{1} \cdot \delta^{-r \cdot \rho}$.

Lemma 3.1. Let K_{0}, K_{1} be relatively compact subdomains in Ω with

$$
K_{0} \subset K_{1} \subset \bar{K}_{1} \subset \Omega \text { and dist. }\left(\partial K_{0}, \partial K_{1}\right)=\delta>0
$$

Then there exists a $\varphi(x) \in C_{0}^{\infty}\left(K_{1}\right)$ with properties; $\varphi(x) \geqq 0$ on K_{1}, $\varphi(x)=1$ on K_{0} and

$$
\begin{equation*}
\left|D^{\alpha} \varphi(x)\right| \leqq \widetilde{C} \tilde{\delta}^{-\mid \alpha]}\left(x \in K_{1},|\alpha| \leqq r \cdot \rho\right) . \tag{3.4}
\end{equation*}
$$

Lemma 3.2. If $R_{i}(\xi)$ is a polynomial with constant coefficients then

$$
\begin{equation*}
\left\|R_{1}(D) \cdots R_{r}(D) v(x)\right\|^{2}=r^{-1} \sum_{i=1}^{r}\left\|R_{i}(D)^{r} v(x)\right\|^{2} \quad\left(v \in C_{0}^{\infty}\right) \tag{3.5}
\end{equation*}
$$

Theorem 3.1. Let $P(D)$ be a partially hypoelliptic operator of type σ in x^{\prime} and K_{0}, K_{1} be relatively compact subdomains of Ω with $K_{0} \subset K_{1} \subset \bar{K}_{1} \subset \Omega$ such that dist. $\left(\partial K_{0}, \partial K_{1}\right)=\delta \quad(0<\delta \leqq 1)$.

Then there exists a constant C_{7} (independent of u and δ), such that

$$
\begin{align*}
\delta^{\sigma}\left|D u, K_{0}\right|_{\delta} & \leqq C_{7}\left\{\sum_{k=0}^{r-s+1}\left|D_{x^{\prime}}^{k} u, K_{1}\right|_{\delta} \delta^{k}\right. \tag{3.6}\\
& \left.+\sum_{0 \leqq|\alpha| \leq \rho(r-1)}\left\|D^{\alpha} P(D) u, K_{1}\right\| \delta^{-\rho(r-1)}\right\}
\end{align*}
$$

for all $u \in C^{\infty}(\Omega)$.
(Outline of Proof.) The quantity that we are going to estimate is

We can split the above sum into two parts so that in the first part $k+1<s\left|\alpha_{1}\right|$, while in the second $k+1=s\left|\alpha_{1}\right|$, then

$$
\begin{equation*}
\text { The 1st part } \leqq C_{8}\left|u, K_{0}\right|_{\delta}^{2} \leqq C_{8}\left|u, K_{1}\right|_{\delta}^{2} . \tag{3.8}
\end{equation*}
$$

In the second each term is estimated as follows (if we set $v=\varphi \cdot u \in C_{0}^{\infty}\left(K_{1}\right)$ and using Lemma 3.2).

$$
\begin{align*}
& \left\|Q_{r}^{\left(\alpha_{1}\right)}(D) \cdots Q_{r}^{(\alpha r)}(D) \cdot D^{s, \alpha_{1} \mid} u, K_{0}\right\|^{2} \delta^{2 s s\left|\alpha_{1}\right|-2 \Sigma\left|\alpha_{i}\right|} \tag{3.9}\\
& \quad \leqq r^{-1} \sum_{i=1}^{r}\left\|Q_{r}^{\left(\alpha_{i}\right)}(D)^{r} D^{s\left|\alpha_{1}\right|} v, K_{1}\right\|^{2} \delta^{-2 r\left|\alpha_{i}\right|-\left|\alpha_{1}\right| \mid}
\end{align*}
$$

The right hand side of (3.9) is composed of the terms of two different types,

$$
\begin{gather*}
\left\|Q_{r}^{(\alpha)}(D)^{r} D^{s|\alpha|} v\right\|^{2} \tag{3.10}\\
\left\|Q_{r}^{(\alpha)}(D)^{r} D^{s k} v\right\|^{2} \delta^{-2 r(|\alpha|-k)} \quad(|\alpha|>k) . \tag{3.11}
\end{gather*}
$$

Then after some calculations we have

$$
\begin{equation*}
\left\|Q_{r}^{(\alpha)}(D)^{r} D^{s k} v\right\|^{2} \delta^{-2 r(|\alpha|-k)} \leqq C_{9}\left|u, K_{1}\right|_{\delta}^{2} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|Q_{r}^{(\alpha)}(D)^{r} D^{s|\alpha|} v\right\|^{2}=\sum_{k=0}^{s|\alpha|}\binom{s|\alpha|}{k} \int\left|Q_{r}^{(\alpha)}(\xi)\right|^{2 r}\left|\xi^{\prime}\right|^{2(s|\alpha|-k)}\left|\xi^{\prime \prime}\right|^{2 k}|v(\xi)|^{2} d \xi \tag{3.10}
\end{equation*}
$$

Every term in (3.10)' with $k \geqq 1$ is estimated by

$$
\begin{align*}
& \delta^{20}\left|D u, K_{0}\right|_{\delta}^{2} \tag{3.7}
\end{align*}
$$

$$
\begin{equation*}
C_{10}\left\{\left|u, K_{1}\right|_{\partial}^{2}+\left|D_{x^{\prime \prime}} u, K_{1}\right|_{\delta}^{2} \delta^{2}\right\} . \tag{3.12}
\end{equation*}
$$

Finally we shall estimate the quantity

$$
\begin{align*}
& \int\left|Q_{r}^{(\alpha)}(\xi)\right|^{2 r}\left|\xi^{\prime}\right|^{2 s|\alpha|}|\hat{v}(\xi)|^{2} d \xi \tag{3.13}\\
& \leqq C \int\left|P_{r}^{\left(\alpha^{\prime}\right)}\left(\xi^{\prime}\right)\left(\xi^{\prime \prime}\right)^{r-\alpha^{\prime \prime}}\right|^{2 r}\left|\xi^{\prime}\right|^{2 s|\alpha|}|\hat{v}(\xi)|^{2} d \xi
\end{align*}
$$

in two cases. The first case. $\alpha=\left(\alpha^{\prime}, \alpha^{\prime \prime}\right),\left|\gamma-\alpha^{\prime \prime}\right|>0$

$$
\begin{equation*}
(3.13) \leqq C_{11} \sum_{0 \leqq r \leq r-s+1}\left|D_{x^{\prime \prime}}^{k} u, K_{1}\right|_{\delta}^{2} \delta^{2 k} . \tag{3.14}
\end{equation*}
$$

The second case: $\alpha^{\prime \prime}=\gamma$. Using (2.6)" we have

$$
\begin{align*}
(3.13) & \leqq C_{1}\left\{\int|\hat{v}(\xi)|^{2} d \xi+\int\left|P(\xi)-\sum_{|r|>0} P_{r}\left(\xi^{\prime}\right)\left(\xi^{\prime \prime}\right)^{r}\right|^{2 r}|\hat{v}(\xi)|^{2} d \xi\right. \tag{3.15}\\
& \leqq C_{12}\left\{\sum_{0 \leq k \leq r-s+1}\left|D_{x^{\prime}}^{k} u, K_{1}\right|^{2} \delta^{2 k}+\sum_{|\alpha| \leq \rho(r-1)} \| D^{\alpha} P(D) u,\left.K_{1}\right|^{2} \delta^{-2 \rho(r-1)}\right\}
\end{align*}
$$

(In this proof constants C_{s}^{\prime} are independent of u and δ.) Therefore (3.8) (3.10) (3.12) (3.14) and (3.15) show the theorem.

Corollary 3.1. Let $P(D)$ be a partially hypoelliptic operator of type σ in x^{\prime}, ρ be the degree of $P(\zeta)$, and K and L be arbitrary relatively compact subdomains of Ω such that $K \subset L \subset \bar{L} \subset \Omega$ and dist. $(\partial K, \partial L)=\delta(0<\delta \leqq 1)$. Then there exists a constant C_{13} such that the inequality

$$
\begin{align*}
& (\delta / p)^{p^{\sigma}}\left|D^{p} u, K\right|_{\partial / p} \leqq C_{13}^{p}\left\{\sum_{p=0}^{r-s+1 \cdot p}(\delta / p)^{k}\left|D_{x^{\prime \prime}}^{k} u, L\right|_{\partial / p}\right. \tag{3.16}\\
& \left.\quad+\sum_{k=0}^{p(r-s+1)} \sum_{|\alpha| \leq \rho(r-1)}\left\|D^{\alpha} P(D) \cdot D^{k} u, L\right\|(\delta / p)^{k-\rho(r-1)}\right\} p=0,1,2, \cdots
\end{align*}
$$

is valid for all $u \in C^{\infty}(\Omega)$.
The constant C_{13} does not depend on p.
Proof. By the assumptions on K and L there exists an increasing sequence of relatively compact domains $K_{0}, K_{1}, \cdots, K_{p}$ such that $K=K_{0} \subset K_{1} \cdots \subset K_{p}=L$ and dist. $\left(\partial K_{i}, \partial K_{i+1}\right)=\delta / p<1$.
Thus every pair K_{i}, K_{i+1} satisfies the conditions imposed on K_{0} and K_{1} in Theorem 3.1. If $u \in C^{\infty}(\Omega)$ then for every $i=0,1, \cdots, D^{i} u \in C^{\infty}(\Omega)$. Successive applications of Theorem 3.1 to K_{i}, K_{i+1} show the inequality (3.16).

Now Corollary 3.1 and Sobolev's lemma lead to the following
Main Theorem. Let $P(D)$ be a partially hypoelliptic operator of type σ in x^{\prime} and $u\left(\in C^{\infty}(\Omega)\right)$ be a solution of $P(D) u=f\left(f \in A_{1(x)}\right)$ in Ω such that $D^{t} u \in A_{1\left(x^{\prime \prime},\right.}$ for every $k(k=0,1, \cdots, \rho r-(r-s)-1)$. Then u belongs to $A_{\sigma(x)}$.

References

[1] J. Friberg: Partially hopoelliptic differential equations of finite type, Math. Scand., 9, 22-42 (1961).
[2] L. Gårding et B. Malgrange: Opérateurs différentiels partiellement hypoelliptiques, C. R. Acad. Sci., Paris, 247, 2083-2086 (1958).
[3] L. Gårding et B. Malgrange: Opérateurs différentiels partiellement hypoelliptiques et partiellement elliptiques, Math. Scand., 9, 5-21 (1961).
[4] L. Hörmander: On the theory of general partial differential operators, Acta. Math., 94, 161-248 (1955).
[5] L. Hörmander: On the regularity of the solutions of boundary value problems, Acta Math., 99, 225-264 (1958).
[6] L. Hörmander: Lectures on linear partial differential operators, mineographed.
[7] S. Matsuura: Partially hypoelliptic and partially elliptic systems of differential operators with constant coefficients, J. Math. Kyoto Univ., 1, 147-160 (1962).
[8] S. Mizohata: Une remarque sur les opérateurs différentiels hypoelliptiques et partiellement hypoelliptiques, J. Math. Kyoto Univ., 1, 411-423 (1962).
[9] C. B. Morrey and L. Nirenberg: On the analyticity of the solutions of linear elliptic systems of partial differential equations, Comm. Pure Appl. Math., 10, 271-290 (1957).

