26. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. VI

By Sakuji Inoue
Faculty of Education, Kumamoto University
(Comm. by Kinjirô Kunugi, m.J.A., Feb. 12, 1963)

On the assumption that ζ and Ω denote respectively a given complex number and an appropriately large circle with center at the origin and that the ordinary part $R(\lambda)$ of the function $S(\lambda)$ defined in the statement of Theorem 1 [1] is a transcendental integral function, in this paper we shall discuss the relation between the distribution of ζ-points of $S(\lambda)$ and that of ζ-points of $R(\lambda)$ in the exterior of the same circle Ω and shall then show that, if each of $S(\lambda)$ and $R(\lambda)$ has its finite exceptional value for the exterior of Ω, the two exceptional values are identical under some conditions.

Theorem 16. Let $S(\lambda), R(\lambda)$, and $\left\{\lambda_{\nu}\right\}$ be the same notations as those in Theorem 1; let σ be an appropriately large number such that $\sup \left|\lambda_{\nu}\right|<\sigma<\infty$; let $\left\{z_{n}\right\}$ be an infinite sequence of all ζ-points of $R(\lambda)$ in the exterior of the circle $|\lambda|=\sigma$ such that

$$
\left.\begin{array}{l}
R\left(z_{n}\right)=\zeta \\
\sigma<\left|z_{n}\right| \leqq\left|z_{n+1}\right|
\end{array}\right\} \quad(n=1,2,3, \cdots)
$$

and $\left|z_{n}\right| \rightarrow \infty(n \rightarrow \infty)$, each ζ-point being counted with the proper multiplicity; let

$$
C=\sup _{n}\left\{\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} S\left(\rho e^{i t}\right) e^{i n t} d t\right|\right\}(<\infty)
$$

where ρ is an arbitrarily prescribed number subject to the condition $\sup _{\nu}\left|\lambda_{\nu}\right|<\rho<\infty$; let μ be the greatest value of the positive integers ν_{n}^{ν} in the first non-zero coefficients $R^{\left(\nu_{\nu}\right)}\left(z_{n}\right) / \nu_{n}$! of the Taylor expansions of $R(\lambda)$ at $z_{n}, n=1,2,3, \cdots$; let $m \equiv \inf _{n}\left\{\left|R^{(\nu n)}\left(z_{n}\right)\right| / \nu_{n}!\right\}$ be positive; let $M \equiv \sup _{n}\left[\max _{k}\left\{\left|R^{(k)}\left(z_{n}\right)\right| / k!\right\}\right](n, k=1,2,3, \cdots)$ be finite; and let r be an arbitrarily given number such that $0<r<m /(M+m)$. Then, in the interior of the circle $\left|\lambda-z_{n}\right|=r$ associated with any z_{n} satisfying

$$
\left\{\frac{C}{r^{\mu}\left(m-\frac{M r}{1-r}\right)}+1\right\} \rho+r<\left|z_{n}\right|,
$$

$S(\lambda)$ has ζ-points whose number (counted according to multiplicity) equals that of ζ-points of $R(\lambda)$ in the interior of the same circle as it.

Proof. It must first be noted that the case where $R(\lambda)$ has such ζ-points $\left\{z_{n}\right\}$ as was described in the statment of the present theorem
can occur in accordance with Picard's theorem when it is a transcendental integral function.

Now, by hypotheses,

$$
\begin{aligned}
\left|R\left(z_{n}+r e^{i \theta}\right)-\zeta\right| & =\left|\sum_{k=1}^{\infty} \frac{R^{(k)}\left(z_{n}\right)}{k!}\left(r e^{i \theta}\right)^{k}\right| \\
& \geqq r^{\nu n}\left(m-\frac{M r}{1-r}\right) \\
& \geqq r^{\mu}\left(m-\frac{M r}{1-r}\right)>0,
\end{aligned}
$$

where ν_{n} is the same notation as that defined in the statement of the present theorem; and in addition, denoting by $\chi(\lambda)$ the sum of the two principal parts of $S(\lambda)$ and applying the expansions of $R(\lambda)$ and $S(\lambda)$ [2], we can find at once that for every z_{n} satisfying $\left|z_{n}\right|$ $>r+\rho$

$$
\begin{aligned}
\left|\chi\left(z_{n}+r e^{i \theta}\right)\right| & =\frac{1}{2}\left|\sum_{k=1}^{\infty}\left(a_{k}+i b_{k}\right)\left(\frac{\rho}{z_{n}+r e^{i \theta}}\right)^{k}\right| \\
& \leqq \frac{1}{2} \sum_{k=1}^{\infty}\left|a_{k}+i b_{k}\right|\left(\frac{\rho}{\left|z_{n}\right|-r}\right)^{k} \\
& \leqq \frac{C \rho}{\left|z_{n}\right|-r-\rho}<\infty,
\end{aligned}
$$

where

$$
\left.\begin{array}{l}
a_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) \cos k t d t \\
b_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) \sin k t d t
\end{array}\right\} .
$$

Since, on the other hand, there exist large positive integers n such that

$$
0<\frac{C_{\rho}}{\left|z_{n}\right|-r-\rho}<r^{\mu}\left(m-\frac{M r}{1-r}\right) \text {, i.e., }\left\{\frac{C}{r^{\mu}\left(m-\frac{M r}{1-r}\right)}+1\right\} \rho+r<\left|z_{n}\right|,
$$

by denoting by G the least value of n satisfying this last inequality we obtain the inequalities $\left|R\left(z_{G+p}+r e^{i \theta}\right)-\zeta\right|>\left|\chi\left(z_{G+p}+r e^{i \theta}\right)\right|, p=0,1,2, \cdots$, for every θ in the closed interval [$0,2 \pi$]. If, for simplicity, we denote by Γ_{p} the circle $\left|\lambda-z_{G+p}\right|=r$ associated with the point z_{G+p} for each value of $p=0,1,2, \cdots$, then the just established result shows that $\mid R(\lambda)$ $-\zeta\left|>|\chi(\lambda)|\right.$ on $\Gamma_{p}, p=0,1,2, \cdots$. In addition to it, $R(\lambda)-\zeta$ and $\chi(\lambda)$ are both regular inside and on any Γ_{p} by the condition $\left|z_{\tilde{\beta}+p}\right|>r+\rho$. In consequence, it is found with the help of Rouche's theorem that the function $S(\lambda)-\zeta=\{R(\lambda)-\zeta\}+\chi(\lambda)$ has zeros (with multiplicities properly counted) inside any Γ_{p} and that the number of those zeros is equal to that of zeros (with multiplicities properly counted) of $R(\lambda)$ $-\zeta$ inside the same Γ_{p}. Evidently this implies that the result stated
in the present theorem holds true.
Theorem 17. Let $S(\lambda), R(\lambda),\left\{\lambda_{\nu}\right\}, \sigma, \rho, C, \mu, m, M$, and r be the same notations as those in Theorem 16 but let $\left\{z_{n}\right\}$ in it be an infinite sequence of all ζ-points of $S(\lambda)$ in the exterior of the circle $|\lambda|=\sigma$ such that

$$
\begin{aligned}
& \left.\begin{array}{l}
S(\lambda)=\zeta \\
\sigma<\left|z_{n}\right| \leqq\left|z_{n+1}\right|
\end{array}\right\} \quad(n=1,2,3, \cdots) .
\end{aligned}
$$

and $\left|z_{n}\right| \rightarrow \infty(n \rightarrow \infty)$, each ζ-point being counted with the proper multiplicity; and let ε be a positive number less than $r^{\mu}\left(m-\frac{M r}{1-r}\right)$.
Then, in the interior of the circle $\left|\lambda-z_{n}\right|=r$ associated with any z_{n} satisfying the conditions $\left|R\left(z_{n}\right)-\zeta\right|<\varepsilon$ and

$$
\left\{\frac{2 C}{r^{\mu}\left(m-\frac{M r}{1-r}\right)-\varepsilon}+1\right\} \rho+r<\left|z_{n}\right|,
$$

$R(\lambda)$ has ζ-points whose number (counted according to multiplicity) equals that of ζ-points of $S(\lambda)$ in the interior of the same circle as it.

Proof. As will be seen immediately from the expansion of $\chi(\lambda)$ [2], $|\chi(\lambda)| \rightarrow 0(|\lambda| \rightarrow \infty)$ and so $\left|R\left(z_{n}\right)-\zeta\right| \rightarrow 0(n \rightarrow \infty)$ by virtue of the hypothesis $S\left(z_{n}\right)=\zeta, n=1,2,3 \cdots$. Since, moreover, by hypotheses,

$$
\begin{aligned}
\left|R\left(z_{n}+r e^{i \theta}\right)-\zeta\right| & \geqq r^{u}\left(m-\frac{M r}{1-r}\right)-\left|R\left(z_{n}\right)-\zeta\right| \\
& >r^{\mu}\left(m-\frac{M r}{1-r}\right)-\varepsilon
\end{aligned}
$$

for all z_{n} with $\left|R\left(z_{n}\right)-\zeta\right|<\varepsilon$, and since, as demonstrated in the course of the proof of Theorem 16,

$$
\left|\chi\left(z_{n}+r e^{i \theta}\right)\right| \leqq \frac{C \rho}{\left|z_{n}\right|-r-\rho}<\infty
$$

for any z_{n} with $\left|z_{n}\right|>r+\rho$, it can be verified without difficulty from the relation $S\left(z_{n}+r e^{i \theta}\right)-\zeta=\left\{R\left(z_{n}+r e^{i \theta}\right)-\zeta\right\}+\chi\left(z_{n}+r e^{i \theta}\right)$ that $\left|S\left(z_{n}+r e^{i \theta}\right)-\zeta\right|$ $>\left|\chi\left(z_{n}+r e^{i \theta}\right)\right|$ for every $\theta \in[0,2 \pi]$ and every z_{n} satisfying the conditions $\left|R\left(z_{n}\right)-\zeta\right|<\varepsilon$ and

$$
\begin{aligned}
& 0<\frac{2 C \rho}{\left|z_{n}\right|-r-\rho}<r^{\mu}\left(m-\frac{M r}{1-r}\right)-\varepsilon, \text { i.e., } \\
&\left\{\frac{2 C}{r^{\mu}\left(m-\frac{M r}{1-r}\right)-\varepsilon}+1\right\} \rho+r<\left|z_{n}\right| .
\end{aligned}
$$

For any z_{n} satisfying these two conditions, we have therefore the inequality $|S(\lambda)-\zeta|>|\chi(\lambda)|$ holding on the circle $\left|\lambda-z_{n}\right|=r$, and moreover $S(\lambda)-\zeta$ and $\chi(\lambda)$ are both regular inside and on this circle by the condition $\left|z_{n}\right|>r+\rho$. On the other hand, as can be seen from
the familiar method of the proof of the Rouche theorem quoted before, it is rewritten as follows: if $f(\lambda)$ and $g(\lambda)$ are both regular on a simply connected domain D, if Γ is the curve defined by the equation $\lambda=\xi(s),(0 \leqq s \leqq 1, \xi(0)=0, \xi(1)=1)$, where $\xi(s)$ is a continuous function of s, and if for any point ξ on Γ the function $f(\lambda)-\xi(s) g(\lambda)$ never vanishes on a rectifiable closed Jordan curve K contained in D, then, in the interior of K, the number (counted according to multiplicity) of zeros of $f(\lambda)-g(\lambda)$ coincides with that of zeros of $f(\lambda)$. In consequence, by applying this rewritten Rouche theorem to the above established results, we can conclude that the number (counted according to multiplicity) of ζ-points of the function $R(\lambda)=S(\lambda)-\chi(\lambda)$ inside any circle $\left|\lambda-z_{n}\right|=r$ where z_{n} satisfies the above-mentioned conditions is equal to that of ζ-points of $S(\lambda)$ inside the same circle as it.

The present theorem has thus been proved.
Theorem 18. Let $S(\lambda), R(\lambda),\left\{\lambda_{\nu}\right\}$, and σ have the same meanings as in Theorems 16 and 17 respectively. If $S(\lambda)$ has $\zeta(\neq \infty)$ as its exceptional value for the exterior of the circle $|\lambda|=\sigma$, that is, if the equation $S(\lambda)=\zeta$ has not infinitely many solutions in the domain $\mathfrak{D}\{\lambda:|\lambda|>\sigma\}$, then the same is also valid of the equation $R(\lambda)=\zeta$, and conversely.

Proof. First we consider the case where $S(\lambda)$ has ζ as its finite exceptional value for the above-mentioned domain \mathfrak{D}. If, contrary to what we wish to prove, ζ is not the exceptional value of $R(\lambda)$ for \mathfrak{D}, there would exist ζ-points $\left\{z_{n}\right\}_{1}^{\infty}$ of $R(\lambda)$, which are so arranged as to satisfy the conditions stated in Theorem 16. Contrary to the hypothesis on $S(\lambda)$, this result would lead us to the conclusion that $S(\lambda)$ has also an infinite sequence of ζ-points in \mathfrak{D}, according to Theorem 16. Consequently ζ must be the exceptional value of $R(\lambda)$.

Next we consider the case where ζ is the finite exceptional value of $R(\lambda)$. In this case, by making use of a method analogous to that applied in the preceding paragraph and of Theorem 17 it can be verified similarly that $S(\lambda)$ has ζ as its exceptional value for the domain \mathfrak{D}.

The proof of the theorem is thus complete.
Remark. We here remark on $R^{(k)}(\lambda), k=0,1,2, \cdots$, that each of these functions is expressible by a curvilinear integral associated with $S(\lambda)$ itself, as shown in Theorem 1.

References

[1] S. Inoue: Some applications of the functional-representations of normal operators in Hilbert spaces, Proc. Japan Acad., 38, 265-266 (1962).
[2] --: Some applications of the functional-representations of normal operators in Hilbert spaces. III, Proc. Japan Acad., 38, 641-642 (1962).

Correction to Sakuji Inoue: "Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. V" (Proc. Japan Acad., 38, 706-710 (1962)).

Page 707, line 6 from bottom:

$$
\text { For " } \frac{1}{(1-\mu) \kappa^{d}} M_{S}(\rho, 0)=K \text { " read } " \frac{1}{(1-\mu) \rho^{d}} M_{S}(\rho, 0)=K "
$$

