26. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. VI

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1963)

On the assumption that ζ and Ω denote respectively a given complex number and an appropriately large circle with center at the origin and that the ordinary part $R(\lambda)$ of the function $S(\lambda)$ defined in the statement of Theorem 1 [1] is a transcendental integral function, in this paper we shall discuss the relation between the distribution of ζ -points of $S(\lambda)$ and that of ζ -points of $R(\lambda)$ in the exterior of the same circle Ω and shall then show that, if each of $S(\lambda)$ and $R(\lambda)$ has its finite exceptional value for the exterior of Ω , the two exceptional values are identical under some conditions.

Theorem 16. Let $S(\lambda), R(\lambda)$, and $\{\lambda_{\nu}\}$ be the same notations as those in Theorem 1; let σ be an appropriately large number such that $\sup_{\nu} |\lambda_{\nu}| < \sigma < \infty$; let $\{z_n\}$ be an infinite sequence of all ζ -points of $R(\lambda)$ in the exterior of the circle $|\lambda| = \sigma$ such that

$$\frac{R(z_n) = \zeta}{\sigma < |z_n| \le |z_{n+1}|} \Big\} (n = 1, 2, 3, \cdots)$$

and $|z_n| \to \infty$ $(n \to \infty)$, each ζ -point being counted with the proper multiplicity; let

$$C = \sup_{n} \left\{ \frac{1}{2\pi} \left| \int_{0}^{2\pi} S(\rho e^{it}) e^{int} dt \right| \right\} \ (<\infty),$$

where ρ is an arbitrarily prescribed number subject to the condition $\sup_{\nu_n} |\lambda_{\nu}| < \rho < \infty$; let μ be the greatest value of the positive integers ν_n in the first non-zero coefficients $R^{(\nu_n)}(z_n)/\nu_n!$ of the Taylor expansions of $R(\lambda)$ at $z_n, n=1, 2, 3, \cdots$; let $m \equiv \inf_{n} \{|R^{(\nu_n)}(z_n)|/\nu_n!\}$ be positive; let $M \equiv \sup_{n} [\max_{k} \{|R^{(k)}(z_n)|/k!\}]$ $(n, k=1, 2, 3, \cdots)$ be finite; and let r be an arbitrarily given number such that 0 < r < m/(M+m). Then, in the interior of the circle $|\lambda - z_n| = r$ associated with any z_n satisfying

$$\left\{ rac{C}{r^{\mu}\!\!\left(\,m\!-\!rac{Mr}{1\!-\!r}
ight)}\!+\!1
ight\}\!
ho\!+\!r\!<\!|z_n|,$$

 $S(\lambda)$ has ζ -points whose number (counted according to multiplicity) equals that of ζ -points of $R(\lambda)$ in the interior of the same circle as it.

Proof. It must first be noted that the case where $R(\lambda)$ has such ζ -points $\{z_n\}$ as was described in the statement of the present theorem

can occur in accordance with Picard's theorem when it is a transcendental integral function.

Now, by hypotheses,

$$egin{aligned} R(z_n\!+\!re^{i heta})\!-\!\zeta\,|&=\left|\sum\limits_{k=1}^\inftyrac{R^{(k)}(z_n)}{k!}(re^{i heta})^k
ight|\ &\geq r^{
u_n}\!\left(m\!-\!rac{Mr}{1\!-\!r}
ight)\ &\geq r^{\mu}\!\left(m\!-\!rac{Mr}{1\!-\!r}
ight)\!>\!0, \end{aligned}$$

where ν_n is the same notation as that defined in the statement of the present theorem; and in addition, denoting by $\chi(\lambda)$ the sum of the two principal parts of $S(\lambda)$ and applying the expansions of $R(\lambda)$ and $S(\lambda)$ [2], we can find at once that for every z_n satisfying $|z_n| > r + \rho$

$$egin{aligned} &\left|\chi(z_n\!+\!re^{i heta})
ight|\!=\!rac{1}{2}igg|_{k=1}^\infty(a_k\!+\!ib_k)\!\left(rac{
ho}{z_n\!+\!re^{i heta}}\!
ight)^k\!
ight| \ &\leq &rac{1}{2}\sum_{k=1}^\infty\!|a_k\!+\!ib_k|\!\left(rac{
ho}{|z_n|\!-\!r}
ight)^k \ &\leq &rac{C
ho}{|z_n|\!-\!r\!-\!
ho}<\infty, \end{aligned}$$

where

$$a_k = rac{1}{\pi} \int_0^{2\pi} S(
ho e^{it}) \cos kt \ dt
ight
angle, \ b_k = rac{1}{\pi} \int_0^{2\pi} S(
ho e^{it}) \sin kt \ dt
ight
angle.$$

Since, on the other hand, there exist large positive integers n such that

$$0 < \frac{C_{
ho}}{|z_n| - r -
ho} < r^{\mu} \Big(m - \frac{Mr}{1 - r} \Big), ext{ i.e., } \left\{ \frac{C}{r^{\mu} \Big(m - \frac{Mr}{1 - r} \Big)} + 1 \right\}
ho + r < |z_n|,$$

by denoting by G the least value of n satisfying this last inequality we obtain the inequalities $|R(z_{G+p}+re^{i\theta})-\zeta| > |\chi(z_{G+p}+re^{i\theta})|$, $p=0,1,2,\cdots$, for every θ in the closed interval $[0,2\pi]$. If, for simplicity, we denote by Γ_p the circle $|\lambda-z_{G+p}|=r$ associated with the point z_{G+p} for each value of $p=0,1,2,\cdots$, then the just established result shows that $|R(\lambda) - \zeta| > |\chi(\lambda)|$ on Γ_p , $p=0,1,2,\cdots$. In addition to it, $R(\lambda)-\zeta$ and $\chi(\lambda)$ are both regular inside and on any Γ_p by the condition $|z_{G+p}| > r+\rho$. In consequence, it is found with the help of Rouché's theorem that the function $S(\lambda)-\zeta=\{R(\lambda)-\zeta\}+\chi(\lambda)$ has zeros (with multiplicities properly counted) inside any Γ_p and that the number of those zeros is equal to that of zeros (with multiplicities properly counted) of $R(\lambda) - \zeta$ inside the same Γ_p . Evidently this implies that the result stated

in the present theorem holds true.

Theorem 17. Let $S(\lambda)$, $R(\lambda)$, $\{\lambda_{\nu}\}$, σ , ρ , C, μ , m, M, and r be the same notations as those in Theorem 16 but let $\{z_n\}$ in it be an infinite sequence of all ζ -points of $S(\lambda)$ in the exterior of the circle $|\lambda| = \sigma$ such that

$$S(\lambda) = \zeta \sigma < |z_n| \le |z_{n+1}|$$
 $(n=1, 2, 3, \cdots)$

and $|z_n| \to \infty$ $(n \to \infty)$, each ζ -point being counted with the proper multiplicity; and let ε be a positive number less than $r^{\mu} \left(m - \frac{Mr}{1-r} \right)$. Then, in the interior of the circle $|\lambda - z_n| = r$ associated with any z_n satisfying the conditions $|R(z_n) - \zeta| < \varepsilon$ and

$$\left\{rac{2C}{r^{\mu}\!\left(m\!-\!rac{Mr}{1\!-\!r}
ight)\!-\!arepsilon}\!+\!1
ight\}\!\!
ho\!+\!r\!<\!|z_n|,$$

 $R(\lambda)$ has ζ -points whose number (counted according to multiplicity) equals that of ζ -points of $S(\lambda)$ in the interior of the same circle as it.

Proof. As will be seen immediately from the expansion of $\chi(\lambda)$ [2], $|\chi(\lambda)| \rightarrow 0 (|\lambda| \rightarrow \infty)$ and so $|R(z_n) - \zeta| \rightarrow 0 (n \rightarrow \infty)$ by virtue of the hypothesis $S(z_n) = \zeta, n = 1, 2, 3 \cdots$. Since, moreover, by hypotheses,

$$egin{aligned} &|R(z_n\!+re^{i heta})\!-\!\zeta| \geqq r^{
u}\!\left(m\!-\!rac{Mr}{1\!-\!r}
ight)\!-\!|R(z_n)\!-\!\zeta| \ &> r^{
u}\!\left(m\!-\!rac{Mr}{1\!-\!r}
ight)\!-\!arepsilon \end{aligned}$$

for all z_n with $|R(z_n)-\zeta| < \varepsilon$, and since, as demonstrated in the course of the proof of Theorem 16,

$$|\chi(z_n+re^{i\theta})| \leq \frac{C\rho}{|z_n|-r-\rho} < \infty$$

for any z_n with $|z_n| > r + \rho$, it can be verified without difficulty from the relation $S(z_n + re^{i\theta}) - \zeta = \{R(z_n + re^{i\theta}) - \zeta\} + \chi(z_n + re^{i\theta})$ that $|S(z_n + re^{i\theta}) - \zeta| > |\chi(z_n + re^{i\theta})|$ for every $\theta \in [0, 2\pi]$ and every z_n satisfying the conditions $|R(z_n) - \zeta| < \varepsilon$ and

$$\begin{split} 0 < & \frac{2C\rho}{|z_n| - r - \rho} < r^{\mu} \left(m - \frac{Mr}{1 - r} \right) - \varepsilon, \text{ i.e.,} \\ & \left\{ \frac{2C}{r^{\mu} \left(m - \frac{Mr}{1 - r} \right) - \varepsilon} + 1 \right\} \rho + r < |z_n|. \end{split}$$

For any z_n satisfying these two conditions, we have therefore the inequality $|S(\lambda)-\zeta| > |\chi(\lambda)|$ holding on the circle $|\lambda-z_n|=r$, and moreover $S(\lambda)-\zeta$ and $\chi(\lambda)$ are both regular inside and on this circle by the condition $|z_n| > r + \rho$. On the other hand, as can be seen from the familiar method of the proof of the Rouché theorem quoted before, it is rewritten as follows: if $f(\lambda)$ and $g(\lambda)$ are both regular on a simply connected domain D, if Γ is the curve defined by the equation $\lambda = \xi(s)$, $(0 \le s \le 1, \xi(0) = 0, \xi(1) = 1)$, where $\xi(s)$ is a continuous function of s, and if for any point ξ on Γ the function $f(\lambda) - \xi(s)g(\lambda)$ never vanishes on a rectifiable closed Jordan curve K contained in D, then, in the interior of K, the number (counted according to multiplicity) of zeros of $f(\lambda) - g(\lambda)$ coincides with that of zeros of $f(\lambda)$. In consequence, by applying this rewritten Rouché theorem to the above established results, we can conclude that the number (counted according to multiplicity) of ζ -points of the function $R(\lambda) = S(\lambda) - \chi(\lambda)$ inside any circle $|\lambda - z_n| = r$ where z_n satisfies the above-mentioned conditions is equal to that of ζ -points of $S(\lambda)$ inside the same circle as it.

The present theorem has thus been proved.

Theorem 18. Let $S(\lambda)$, $R(\lambda)$, $\{\lambda_{\nu}\}$, and σ have the same meanings as in Theorems 16 and 17 respectively. If $S(\lambda)$ has $\zeta(\pm \infty)$ as its exceptional value for the exterior of the circle $|\lambda| = \sigma$, that is, if the equation $S(\lambda) = \zeta$ has not infinitely many solutions in the domain $\mathfrak{D}\{\lambda: |\lambda| > \sigma\}$, then the same is also valid of the equation $R(\lambda) = \zeta$, and conversely.

Proof. First we consider the case where $S(\lambda)$ has ζ as its finite exceptional value for the above-mentioned domain \mathfrak{D} . If, contrary to what we wish to prove, ζ is not the exceptional value of $R(\lambda)$ for \mathfrak{D} , there would exist ζ -points $\{z_n\}_1^{\infty}$ of $R(\lambda)$, which are so arranged as to satisfy the conditions stated in Theorem 16. Contrary to the hypothesis on $S(\lambda)$, this result would lead us to the conclusion that $S(\lambda)$ has also an infinite sequence of ζ -points in \mathfrak{D} , according to Theorem 16. Consequently ζ must be the exceptional value of $R(\lambda)$.

Next we consider the case where ζ is the finite exceptional value of $R(\lambda)$. In this case, by making use of a method analogous to that applied in the preceding paragraph and of Theorem 17 it can be verified similarly that $S(\lambda)$ has ζ as its exceptional value for the domain \mathfrak{D} .

The proof of the theorem is thus complete.

Remark. We here remark on $R^{(k)}(\lambda)$, $k=0, 1, 2, \cdots$, that each of these functions is expressible by a curvilinear integral associated with $S(\lambda)$ itself, as shown in Theorem 1.

No. 2]

References

- [1] S. Inoue: Some applications of the functional-representations of normal operators in Hilbert spaces, Proc. Japan Acad., **38**, 265-266 (1962).
- [2] ——: Some applications of the functional-representations of normal operators in Hilbert spaces. III, Proc. Japan Acad., **38**, 641-642 (1962).

Correction to Sakuji Inoue: "Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. V" (Proc. Japan Acad., **38**, 706-710 (1962)).

Page 707, line 6 from bottom:

For "
$$\frac{1}{(1-\mu)\kappa^d}M_S(\rho, 0) = K$$
" read " $\frac{1}{(1-\mu)\rho^d}M_S(\rho, 0) = K$ ".