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1. Introduction. The main purpose of this paper is to argue
the generalized harmonic analysis of a function of composition type
in the Weyl space. Let f(x) be a bounded measurable function and
K(x) be a summable function on (—oo, ). Let us consider the
composition of f and K:

(L) o0)= [ K@—)fw)dy=K+.

Let us denote by s(u,x) the Fourier-Wiener transform of f(x-+¢)
where we take “t” as variable:

T

-I—E—flf(w-l—t)———— ¢

Let us introduce the norm which was firstly defined by H. Weyl [1]
in the study of almost periodic functions. It concerns with measura-
ble and integrable function in any finite interval and such that

(1.3) lim sup % W[ S P dt< .

100 =002

By f~g we mean that we have

(1.4) Tm sup % [ LA —g(t) [F de=0.

71— =000

For the sake of simplicity we use the notation
o 1/»
(15) 171=( [ 1701 dt)” @>0).

Then the main result of this paper is as follows:

Theorem 1. Let f(x) and g(x) be bounded measurable functions
on (—oo, ). Let K(x) be a measurable function of the class
L,(— o, ©). Let us denote by s(u,«) and t(u, z) the Fourier-Wiener
transform of f(x+t) and g(x-+t) respectively. Let us put

1.6) I(e,2)= % [{t(u+e, ) —t(u—e, )} —k(u){s(u+e¢, ) —s(u—e, £)}|3

where k(u) is the Fourier transform of K(t). Then under the sup-
plementary condition
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.7 f°°|t|1/2|K(t)|dt<oo,
for that there exists the following relation between f and g
(1.8) g~Kxf,
it is necessary and sufficient that
(1.9) sup I(s, x) < oo and lim sup I(¢, ) =0
— 0B < 0 &—0 x

are satisfied.

This result corresponds to the A. Beurling theorem [4], and is
analogous form of the N. Wiener theorem [12, p. 170]. The method
of proof can be done by running on his lines, but for the sake of
uniformity it is not easy. We also supply the one-sided Wiener
formula which has established in the previous paper [9]. In the
last we shall define spectrum of bounded function in some sense.

2. Theorems on composition. Proof of Theorem 1. The
proof of necessity. By the one-sided Wiener formula we may assume
that g=Kxf without loss of generality. We get uniformly as for
2 in (—oco, o0):

k(u){s(u+e, x) —s(u—s¢, x)}

i ) . 1 ™ 2sinet _,
— —-tué tut
__f K(&)e ™d¢ l.‘}fg.—fz_n _fA ft+x) e~ it

t

— Zo “K(@dglim. L “flo—gta) 2= g,
Because we have
'l[f_A+e_l_,{Mjf(s_g“‘x)%e‘mdsH:§327rs_°§ll£wlf(x)[2.
Let ;: put
F(u, ¢, «, A)=:/—;—;£Af(s—$+x)_2$—h;—i(%"i)e'mds.

Then we get
IF'(w, &, x, A)|[3<8x sup| f|*
Let us also put
F(u, ¢, x) =l.j.m. F(u, ¢,z A).
Then we get . L,
P, & )= Flu, &, Ali=supl g [ + [ |45

2
—o0 s(A—8 S
and we get over any finite range of £

_18- F(u, &, #)—F(u, & z, A0 (A—>)

uniformly as for z in (— o, ). We also have
|F(u’€’x’ A)l ézJ? Suplf[.

T

From these estimations we get
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ke(u){s(u+e, w) s(u—e, x)}

(2.1) _ —us ® e 2 sin e(s—¢)
=Lim. - f R
uniformly as for x in (——00, ).
Next we get
t(u+e, x)—t(u—e¢, x)
(2.2) . 1 2 sinet p
=Lim. Jzﬁf dt f K(&)f (t+x—&)de.

From (2.1) and (2.2) we get
{t(u+e, x)— t(u —g, &)} —k(u){s(u+e, x)—s(u—e, x)}
(2.8) _ 1 —iut sinet _sin s(t £)
=Lim. L f dt f 21t 45— 5)[ - ]K(e)ds
Here we borrow the lemma due to N. Wiener [12, p. 157].
Lemma 1. We have
i t—
(2.4) lsm et _ sin g( {-‘) 16 ¢|&]
t t—e 17 |t|+e]
Substituting (2.4) into (2.3) we get
Ke, v)= 32 T K1z
Gasszeswl /7| [T IS 1K@l
By the Schwartz 1nequahty we get

_:WI{—IE K@ldsar=( _fw Cle e K@) dsf(:ﬁ)—g dt)

<a( 71611 K@)1d¢).

Therefore we obtain .
I(e,x)§32nesup|f[2<f |g|'/=1K(5)1d5).

Thus the necessity is proved.

Proof of sufficiency. This is easily obtained by the one-sided
Wiener formula. We omit details.

We prove a theorem on dilatation:

Theorem 2. Let f(x) be a bounded measurable function. Let
us denote by s(u,x) the Fourier-Wiener transform of f(x-+t). Let
us put

@5 @ U9="Tl(stute a+y)—su—s,s+))
. €
—e"V{s(u+e, x)—s(u—e, x)}|[3
Then we get over any finite range of ¥
(2.6) sup J(z,y, &)< and li—n‘c)lsgp J(x, y, £)=0.
This is an analogous form of the N. Wiener theorem [12, p. 158].

Proof of Theorem 2. We get
{s(u+e, x+vy)—s(u—e, x+y)}—e*{s(u+e¢, x)—s(u—e, x)}
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= l'l'm'_l_‘—fAf(t-!-w)[ 2 sin 8(t—y) _ 2 sin 6t]e_iu(t_y)dt.
A—co \/2” Y

t—y t
Applying Lemma 1 to the ahove formula we get

Iy, )= 16% [ | ftt+-a) dt =16 |y|e-sup| £ |2

ﬂﬂ+|02
By the aid of this theorem we can prove the second theorem
on composition.
Theorem 3. Under the same assumption and notation as Theorem
1 except the supplementary condition (1.7), we get

lim sup ——||t(u+e, x)—t(u—e, x)||3
@1 e

=lim sup __||k(u){s(u+e) s(u—e)}|f3

&—() =002
Proof of Theorem 3. Let us put for N>1, K=K if |K|<N
and Ky=(sign K)N if |K|=N. Then we have KyeL,()Ly(— o, )
and ||K—Kyl||,>0(N—->). Let us denote by ¢y(u,x) the Fourier-
Wiener transform of (Ky=*f)(t+2x). Then we get
ty(ute, x)—ty(u—e, &)= f Kn(@ls(ute, v—)—s(u—e, x—£)}de.

Here let us put

A(u, x—¢, ) ={s(u+e, x—&)—s(u—e, x—&)}—e “{s(u+e, x) —s(u—s, x)}
then we get
[[tx(u+e 2)—tn(u—e, x)|[3

= llkea(w){s(ute, &)= s(u—se, M) + [ Kn(©)d(u, 58, )zl

where ky(u) is the Fourier transform of Ky(t).
We have

(2.8) Tm sup _H f Kn(€)d(u, 5—¢, e)d&“ —0.

£—00 —o<Bl0 &

Because if we write |Kyd|=|Ky|"?| | Ky|?4| and apply the Schwartz
inequality we get for any finite L>0

1 L _ 2 L _1_ oo . 2
T s a—c del < [ 1K@ 1 sup - [ 1A a—e,
Applying Theorem 2 we get
L 2 L
sup—l-Hf (&) A, o, e)d&” < sup —HA(u,x &9l | Knlds>0
“ € —L 2 —L

=L<(<L

as e—~>0.
On the other hand we get

%H f K4, 58, g

=1 f Kal@)ls(u-+e, 58— s(u—s, a— )|+
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+ —i—“ Lf MKN(E){s(u+ & &) —s(u—s, x)}e‘i“”dé":.

< 2( [ 1kalae)( [ 1B 14 [Tlstute, - —su—s, 5—2) Fdu)

€ L
+% !O; ml( Lf °(’Kz,,(cf)e‘“‘ed§>{s(u-}—5, x)—s(u—e, )} 2d'u,

2

<16z sup|f |2'<f°°|sz(5)|d$>
By the similar WLay we get
%” Io “Kn(@du, 5—, e)dz|[<16 7 sup | 12 _f°° TR ).

If we take L sufficiently large and fix, then tend ¢ to 0. We can
make the left hand side of (2.8) to be less than any positive number.
Thus we have proved (2.8). Therefore we get

(2.9) Ii—n:sup[[tlv(u—l-s, x) —ty(u—¢,2)|[i=1limsup||ky(u){s(u+ &) — s(u—e)}| |2
& — x &e—0 x

Furthermore we have

and
% I[{t(u+ &, ) —tu—e, @)} —{ta(u—s, &) —ta(u—e, )}
=16 sup | f | K—Kyll;—>0 (N—0).

Therefore we obtain (2.7) from (2.9).

3. Spectrum of bounded function. Concerning to the definition
of spectrum of functions, in particular as for bounded measurable
functions, there are several ones. These are due to A. Beurling [2,
3,6] and H. Pollard [10]. These are quite different apparently but
are equivalent to each other. One of these is as follows:

Definition 1. Let f be a bounded measurable function on (— oo,
o). By A(f) we mean the set of real number 1 with following
property: if K is a function in L,(— o, o) such that

(3.1) (Kxf) @)= [ K@—1)f @)dy=0

for all # in (— o0, ) the Fourier transform of K vanishes at {=a.
Let us introduce the following two definitions of spectrum of f.
Definition 2. By 4.(f) we mean the set of real number 2 with
the following property: if K is a funection in L,(— o0, c0) such that

(3:2) (Kxf)@)= [ K@—9)f @)dy~0

in the sense of (1.4), then the Fourier transform of K vanishes at
t=24.
Definition 3. By 4y,(f) we mean the set of real number 1 with
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the following property: for any positive number §>0

. 1 240
(3.3) Tm sup f |s(u+¢, @) —s(u—e, z)[2du>0.
s —o<xLo & Vs
Applying Theorems 1 and 3 we get immediately
Theorem 4. For any bounded measurable function we have
(3.4) A (F) = Awy(f)-
We omit details (cf. A. Beurling [4,5] and H. Pollard [10, Theorem
4. 1.

Definition 4. By 4*(f) we mean the set of real number 1 with
the following property: e¢“** is contained in the manifold which is
spanned by dilatations of f(¢).

Then it is clearly

(3.5) A*(f)DAS)D4(S).
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