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1. Introduction. The main purpose of this paper is to argue
the generalized harmonic analysis of a function of composition type
in the Weyl space. Let f(x) be a bounded measurable function and
K(x) be a summable function on (--oo, ). Let us consider the
composition of f and K:

(1.1) g(x) fK(x--y)f(y)dy-- K.f.
Let us denote by s(u,x) the Fourier-Wiener transform of f(x+t)
where we take "t" as variable:

l[f f- l(1.2) s(u, ) 1.i.m. + f(+ t)e- - --it
dt

+ + tl
--1

Le us inrouee the norm whieh was firstly defined by
in he study of almos eriodie funeions. I concerns with measura-
ble and integrable function in any finite interval and such

(1.8) lim su 1

By fg we mean that we have

(1.4) lim sup 1
<<Y. ]f(t)--g(t) ] dt--O.

For the sake of simplicity we use the notation

(1.5) ]]f[[-(f, f(t) dt (p>0)
/

Then the main result of this paper is as follows:
Theorem 1. Let f(x) and g(x) be bounded measurable functions

on (--, ). Let K(x) be a measurable function of the class
L(--, ). Let us denote by s(u, x) and t(u, x)the Fourier-Wiener
transform of f(x+t) and g(x+t) respectively. Let us put

(1.6)

where k() is the Pourier transform of K(t). hen under the sup-
plementary condition
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for that there exists the following relation between f and g
(1.8) gK.f,
it is necessary and sufficient that

(1.9) sup I(e, x) oo and lira sup i(, x)-0
-< 0

re stisHed.
This result corresponds to the A. Beurling theorem E4, and is

analogous form of the N. Wiener theorem E12, p. 170. The method
of proof can be done by running on his lines, but for the sake of
uniformity it is not easy. We also supply the one-sided Wiener
formula which has established in the previous paper 9. In the
last we shall define spectrum of bounded function in some sense.

2. Theorems on composition. Proof of Theorem 1. The
proof of necessity. By the one-sided Wiener formula we may assume
that g--K,f without loss of generality. We get uniformly as for

in
(u){s(u+, x)-s(u-, x)}

fooK()e-Ud 1.i.m.1 (t+x) 2 sint t e-dt

K() 1.i.m. f(s_) 2 sin (s--)

Beus w hv
2 sin e(s--$) Uds]:=f(s-$+ x) e- < 32=e sup If(x) .
8 --<<

Let us put

N(, , , A)-- f(--+) sin s(--) e_.g.

Then we get

Let us also put
IIF(u, , x, A)]I=<8= sup fl.
F(u, , x)= 1.i.m. F(u, , x, A).

Then we get

IlF(u, , x)--F(u, , x, A)II <__sup lfls + .. d$
CA-)

and we get over any finite range of

1IF(u, $, x)--F(u, , , A)llO (A)

uniformly as for x in (--oo, oo). We also have

IF(u, , x, A)[ _<_ 2V-____A sup lf I.
From these estimations we get
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k(u){s(u+, x)-s(u-,
(2.1) 1.i.m. e-uds f(s--+x) 2 sin s(s--) K()d,

uniformly as for x in (--, ).
Next we get

t(u+, x) t(u-, x)
(’) 1.i.m. 1 sin ste_ K()f(t+--)g.

Prom (.1) and (.) we get
[t(+s, )-t(-s, )l-(){(+s, )-(-s,

(2.3) 1.i.m. 1 dt 2f(t+x--) sine- )d.

_
t t-

Here we borrow the lemma due to N. Wiener [12, p. 157:
Lemma 1. We have

(2.4) sin st sin s(t--)l< 16s

Substituting (2.4) into (2.3) we get

By the Schwartz inequality we get

tl +

Therefore we obtain

1(, x) 32 s sup lf I1*/*] g(+) d+

Thus the necessity is proved.
Proof of sufficiency. This is easily obtained by the one-sided

Wiener formula. We omit details.
We prove a theorem on dilatation:
Theorem 2. Let f(x) be a bounded measurable function. Let

us denote by s(u, x) the Fourier-Wiener transform of f(x+t). Let
us put

J(x, y, )- L[[{s(u++, x+y)-s(u-, x+y)}(2.5)
-e+++{s(u+, x)-s(u-, x)}ll+.

Then we get over any finite range of y
(2.6) sup J(x, y, )< and lim sup J(x, y,

This is an analogous form of the N. Wiener theorem [12, p. 158J.
Proof of Theorem 2. We get

{s(u+z, x+y)-s(u-, x+y)}-e{s(u+e, x)-s(u-e, x)}
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Applying Lemma 1 to the above formula we get

J(a, y, e) =< 16 s f(t+ x) [ .
([$] + [y])

By the aid of this theorem we can prove the second theorem
on composition.

Theorem 3. Under the same assumption and notation as Theorem
1 except the supplementary condition (1.7), we get

lim sup ][t(u+, x)--t(u--, x)]
(2.7) .0-<< s

=lim sup l]k(u)[s(u+s)--s(u--e)}].
0--<< $

Proof of Theorem 3. Let us put for N>I,K--K if ]K] <N
and K--(sign K)N if [K] >__N. Then we have KsLL.(--, )
and ]]K--K]I-O(N-). Let us denote by t(u,x) the Fourier-
Wiener transform of (K.f)(t+x). Then we get

t(u+s, x)--tv(u--s, x)-- Kv($){s(u+s’, x--)--s(u--s, x--$)}d.

Here let us put
/(u, x--, e)--{s(u+e, x--)--s(u--e, x--$)}--e-{s(u+e, x)--s(u--e, x)}
then we get

[t (u+ x)- x)ll 
x)] +

where k(u) is the Fourier transform of K(t).
We have

(2.8) lim sup --1 Kv($)l(u, x--$, e)d$ --0.

Because if we write KAI KI/ K I/A and apply the Schwartz
inequality we get for any finite L>0

--L<<

Applying Theorem 2 we get

sup-- K()A(u,x--,s)d$ sup --1

as s0.
On the other hand we get
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+ 1 ()e-’d {s(u+s, x)--s(u--e, x)} du

=<16 sup lf g()ld

By the similar way we get

l lf- li (f-{)=K#($)a(u, x--S, s)d < 16 u sup f K#($) I=d

If we take L sufficiently large and fix, then tend to 0. We can
make the left hand side of (2.8) to be less than any positive number.
Thus we have proved (2.8). Therefore we get

(2.9) limsup][t(u+ s,x)--t(u--e,x)][--lisup{]k(u){s(u+ e)--s(u--)}][.
FurChermore we have

sup I()-(u)l 11K-KIIO (N)
--<<

and
1. i]{t(u+, x)-t(u--e, x)}-{t(u-e, x)-t(u-e,

=<16 sup If I"IIK-KII,O (N-0).

Therefore we obtain (2.7) from (2.9).
3o Spectrum of bounded function. Concerning to the definition

of spectrum of functions, in particular as for bounded measurable
functions, there are several ones. These are due to A. Beurling V2,
3, 6] and H. Pollard [10. These are quite different apparently but
are equivalent to each other. One of these is as follows:

Definition 1. Let f be a bounded measurable function on (--
oo). By A(f) we mean the set of real number with following
property: if K is a function in L,(--oo, co) such that

(3.1) (K,f)(x)--fK(x--y)f(y)dy--O
for all x in (--c, ) the Fourier transform of K vanishes at t--2.

Let us introduce the following two definitions of spectrum of f.
Definition 2. By A,(f) we mean the set of real number 2 with

the following property: if K is a function in LI(--oo, co) such that

(3.2) (K.f)(x)--fg(x--y)f(y)dyO
in the sense of (1.4), then the Fourier transform of K vanishes at

Definition 3. By Aw(f) we mean the set of real number 2 with
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the following property: for any positive number >0

(3.3) lim sup 1 s(u+, x)-- s(u-- s, x)Idu> O.

Applying Theorems 1 and 3 we get immediately
Theorem 4. For any bounded measurable function we have

(3.4) A,(f)--Aw(f).
We omit details (cf. A. Beurling 4, 5 and H. Pollard 10, Theorem
4.

Definition 4. By d*(f) we mean the set of real number 2 with
the following property: e* is contained in the manifold which is
spanned by dilatations of f(t).

Then it is clearly
(3.5) d*(f)d(f)d,(f).
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