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Let R be an open Riemann surface and A(R) be the ring of
all one-valued regular analytic functions on R (j=l, 2) and a be a
ring isomorphism of A(R) onto A(R). Since the imaginary unit i
is the primitive fourth root of 1, either i--i or --i. In the former
(resp. latter) case, is called a direct (resp. indirect) ring isomor-
phism. Suppose that there exists a one-to-one transformation S of
R onto R.. If S is directly conformal, then S induces a direct ring
isomorphism a defined by the relation

f(p)--ff(Z(p)) (f A(R1), pR).
If S is indirectly conformal, then S induces an indirect ring isomor-
phism a defined by the relation

f(p)=ff(S(p)) (feA(R1), peR1).
In either case, we say that a is induced by S. The aim of this note
is to prove the converse of the above fact.

Theorem. Any direct (resp. indirect) ring isomorphism of A(R)
onto A(R2) is induced by a unique one-to-one direct (resp. indirect)
conformal transformation of R onto R2.

This fact is first proved by Bers under the assumption that R
and R. are open plane domains. For arbitrary open Riemann sur-
faces R and R., Rudin proved the above fact under the assumption
that the given isomorphism preserves complex constants unchanged.)

Hence our Theorem, in which no a priori assumption on complex
constants is made, is a proper generalization of Bers’ result and also
contains Rudin’s result. We divide the proof of our Theorem into
several lemmas. Some of them are well known but we include their
proofs for the sake of completeness.

1. Ring isomorphism on complex numbers. Let a be the given
ring isomorphism of A(R) onto A(R) and r be the inverse of a.

The map r is also a ring isomorphism of A(R)onto A(R). We
denote by C the complex number field and by Cr the complex rational
number field, where a complex number, both of whose real and ima-

1) Bull. Amer. Math. Soc., 54, 311-315 (1948).
2) Bull. Amer. Math. Soc., 61, 543 (1955).
3) This problem is suggested by Prof. Bers. If R . OB, then our Theorem is easily

reduced to Rudin’s result. See Proposition 3 in Royden’s paper: Seminars on analytic
functions, Inst. for advanced study, Princeton, 2, 273-285 (1958).
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ginary part is a real rational number, is called a complex rational
number. Clearly Cr and C are subrings of A(R) (3"-----1, 2).

Lemma 1. If a is direct (resp. indirect), then for any in C-- (resp. ).
Proof. Since C is generated by 1 and i, our assertion is clear

if we notice that 1=1=1 and i’=i=i (resp. --i).
Sublemma 2.1. The following two assertions are equivalent:
(a) a function f in A(R) belongs to C;
(b) for any a in C, there exists a function f in A(R) such

that

Proof. The implication (a)->(b) is trivial. To show the implica-
tion (b)-(a), contrary to the assertion, assume that f is not a con-
stant. Then we can find a subdomain U in R in which f is univalent.
Since f(U) is open in C and C is dense in C, there exists a point p

in U such that a=f(p) belongs to C. By the assumption (b), there
exists a function f in A(R) such that f=a+f2. Since f(p)--O, f
is not univalent in U near p. This is a contradiction.

Lemma 2. C’-C and C-C.
Proof. In virtue of Lemma 1, the property (b)in Sublemma

2.1 is preserved by a and r. Thus by Sublemma 2.1, a and r carry
constants to constants. Hence C-C’-C.

Remark. we shall later see that a and r are trivial ring auto-
morphisms of C onto itself, i.e. a---a’=a (resp. ). But at this
stage, we cannot yet conclude this. In fact, there really exist
infinitely many non-trivial ring automorphisms of C onto itself.

2. Principal ideals. Let f be in A(R.). We denote by (f) the
set

(gf; g A(R)),
if it does not contain the constant 1. The set (f) is an ideal of
A(R.) and called a principal ideal (abbreviated as p.i.) of A(R).
We say that a p.i. (f) is a maximal principal ideal (abbreviated
as m.p.i.) if for any p.i. (g) such that (f)(g), we get (f)--(g).

For each point p in R, we denote by J the set
(g; g e A(R), g(p)--O),

which is also an ideal of A(R).
Sublemma :.1. (a) For any m.p.i. (f), there exists a point p

in R such that (f)--J.
(b) For any point p in R, there exists an m.p.i. (f) such that

J--(f).
Proof. Ad. (a)" Let (f) be an m.p.i. The function f vanishes at

some point of R. If this is not the case, then by 1/feA(R), (f)
would contain the constant 1--(1/f)f, which is a contradiction. Let
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p be one of the zero points of f. By Florack’s theorem,) we can
find a function h in A(R.) such that g=f/h belongs to A(R) and
has only a simple zero at p. Then clearly (g) is a p.i. and (f)(g).
Hence by the maximality of (f), (f)--(g) or g(f). Thus g=kf for
some k in A(R) and so f has only a simple zero at p. From this,
it follows that (f)--J.

Ad. (b): By Florack’s theorem,) there exists a function f in

A(R) which has only a simple zero at p. Clearly (f) is an m.p.i.
and (f)-J.

Sublemma :o2o There exists a one-to-one mapping S (resp. T)
of R1 (resp. R.) onto R. (resp. RI) such that S-- T and

J--Js) (resp. J--Jrq,).
Proof. For each point; p in R, there exists an m.p.i. (f) such

that J--(f) (Sublemma 3.1). Clearly J-(f’) is an m.p.i, in A(R)
and so here exists a point q in R such that (f)--Jq (Sublemma
3.1). We define the mapping S by q--S(p), i.e.

J;--Js() (peR).
It is easy to see that S is a one-to-one mapping of R onto R..
Similarly, we can define the desired mapping T. Since

Jr,,-(J,))’-(J;)-J,
it holds that TS(p)-p on R. Similarly, ST(q)-q on R.. Thus S---T.

Lemma 3. There exists a one-to-one mapping S (resp. T) of
R (resp. R2) onto R. (resp. R1) such tha$ S-I--T and

(f(p))- f’(S(p)) (f eA(RI), peR)
and

(g(q))--g’(T(q)) (geA(R.), qR2).
Proof. Let S and T be as in Sublemma 3.2. Since f-f(p) belongs

to J, the function f’--(f(p)) which is equal to (f--f(p)) belongs to
J--J). Thus f(S(p))-(f(p)). Similarly, we get the identity for
r and T.

:. Continuity properties. A mapping of a topological space
into another is called a compact mapping if the closure of the image
of any compact set under this mapping is again compact.

Lemma 4. The mapping S (resp. T) in Lemma 3 is a compact
mapping.

Proof. Let K be an arbitrary compact set in R. We have to
show that the set S(K) is a compact set in R. Contrary to the
assertion, assume that S(K) is not compact. Then there exists an
infinite sequence (q) of distinct points in S(K) which does not
accumulate in R.. Set p--T(q). Then (p) is a sequence of points

4) Schr. Math. Inst. Univ. Miinster, no. 1 (1948).
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in the compact set K. Hence by choosing a suitable subsequence,
we may assume that (p,) itself converges to a point Po in K. By
Florack’s theorem, we can find a function g in A(R) such that

g(q,)-n (n-l, 2, 3,...).
Put f--g. Then by Lemma 3,

(f(p,))"-f’(S(p))-g(q,)-n (n-l, 2, 3,...).
Hence by Lemma 1,

f(p,)--((f(p,)))’--n--n (n--l, 2, 3,...).
Thus we arrive at the following contradiction:

f(po)--lim_f(p,)--
Hence S(K) is compact and so S is a compact mapping. Similarly,
we can show that T is a compact mapping.

Sublemma .1o The mappings and a are continuous on C
with respect to the usual plane topology in C.

Proof. Since the situation is quite parallel, we only prove the
continuity of . For the aim, we have only to show that in C,

lima.-0 implies hma,=0.
First we show that the sequence (a) is bounded. For the aim,

choose a function f in A(R) and a point p in R such that f has a
simple zero at p. Let U be an open neighborhood of p such that

U is compact and f is univalent in U. Then f(U) is open in C and
so contains a (n>_n0) for some no. Then we can find a sequence (p)
of points in U such that

f(p) 0[. (n

_
no).

Let g--ff and q,-S(p,) (n >_no). Then the sequence (q,) is contained

in the compact set K--S(U) (Lemma 4). Since
sup ([ g(q)I qeK)--p< c

and
a-(f(p))=f’(S(p))--g(q) (n _no),

we get
(n>n0).

Finally we show that hm ,--0. Assume the contrary. Then,
since (a) is bounded, there exists a subsequence of (a) converging to
a non-zero number. By renumbering, we may assume that (a) itself
converges to a non-zero number a. Let fl-l/a and fl--1/a. Then

lim n-- oo and lim flg--fl= o.
We can find a function g in A(R.) and a point q in R. such that
the function g--fl has a simple zero at q. Let V be an open neigh-

borhood of q such that V is compact and g is univalent in V. Since
g(V) is open in C and contains fl, the set g(V) contains fl; (n>_no)
for some no. So we can find a sequence (q) in V such that

g(q) fl (n

_
no).

Let f--g and p,--T(q) (n >_no). Then the sequence (p) is contained
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in the compact set T(V) (Lemma 4). Hence, by choosing a suitable
subsequence, we may assume that the sequence (p) converges to a
point P0 in R. Since

f(n) g:(n) gr( T(qn)) --(g(qn)) () fin,
we arrived at the following contradiction:

f(Po) limn- f(Pn) limn/,
Lemma 5. If a is direct (resp. indirect), then for any a in C,

a-a-a (resp. -).
Proof. For any a in C, we can find a sequence (a,) in C such

that lima--a. As a=a (resp. n) and a is continuous (Lemmas
1 and 4), so we get a-a (resp. ). Similarly, we get the identity
for r.

Lemma 5. The mapping S (esp. T) in Lemma 3 is continuous.
Proof. We show this in the case where a is direct. The proof

for indirect a is similar. Let p----lim p,, in R and q--S(p). Then
(q) is contained in a compact set in R. (Lemma 4). We have to
show that (q) is convergent. Contrary to the assertion, assume
that there exist two subsequences (q))(k-1,2) of (q) such that

limq(,)- q) (k-- 1, 2)
and

By Florack’s theorem,) there exists a function g in A(R) such that
g(q())- k (k-- 1, 2).

Put f---g and p(,)-- T(q(,)) (k-- 1, 2; n-- 1, 2, 3,...). Then
p- lim,,_.,oo

Using Lemmas 3 and 5, we get
f(pC,))-f’(S(p))) g(q(,)) (k- 1, 2).

Hence by making n->oo, we have
f(p)- g(q())- k (k-- 1, 2),

which is a contradiction. Similarly T is continuous.

4. Completion of the proof. By Lemmas 3, 5, and 6, there
exists a homeomorphism S of R onto R. such that

f(p)--f(S(p)) (resp. f(p)--ff(S(p)))
for any f in A(R)and p in R. Let g possess a simple zero at
S(p)) and f=g. Let V be a simply connected open neighborhood of
S(p) in which g is univalent. By Lemma 6, there exists a simply
connected open neighborhood U of p such that

S(U)V and f(U)g(V).
Then

S-g-of (resp. S-g-of)
is a local representation of S in U, which shows that S is a direct
(resp. indirect) conformal transformation of R onto R.

Finally, we show the unicity of S. Suppose that S’ is a direct
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(resp. indirect) conformal transformation of R onto R. such that

f--f )f--foS’ (resp. oS’
for any f in A(R,). Then for any f in A(R,),

f(S(p))-f’(S’(p))
on R. If S=#-S’, then there exists a point p in R, such that

By Florack’s theorem,) there exists a function g in A(R.) such that
g(q) =#- g(q’). Set f-- g. Then f belongs to A(R,) and

j"(S’(p))-f’(S(p))- g(q) # g(q’)--f’(S’(p)),
which is clearly a contradiction.


