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Mathematical Institute, Nagoya University

(Comm. by Kinjir5 KUNUGI, M.J.A., Feb. 12, 1963)

1. Besides its own interest, Evans’ harmonic function on open
Riemann surfaces is important in the function theory on open
Riemann surfaces. In this note, we shall sketch a method to con-
struct Evans’ harmonic function on open Riemann surfaces. The
detail will be published elsewhere.

DEFINITION (Boboc-Constantinescu-Cornea [_1). Let R be a hyper-
bolic Riemann surface and be the class of all sequences (Zn)nl of
points in R which do not accumulate in R and

lim inf g(z, z0) > 0,
where g(z, Zo) is Green’s function on R with its pole Zo in R. An
Evan’s function S(z) on R is a positive continuous superharmonic

function on R such that
lim. S(z)- oo

for any (zn) in . Moreover if S(z) is harmonic on R, we call S(z)
an Evans’ harmonic function on R.

Boboc, Constantinescu and Cornea [1] proved the existence of

Evans’ function on R. In the case where R--R’--Ro, where R’ is a
parabolic Riemann surface and R0 is a relatively compact subdomain
of R’ with smooth boundary, Kuramochi [2] proved the existence of
Evans’ harmonic function on R, from which the existence of Evans-
Selberg’s potential on R’ follows at once by using the linear operator
method of Sario [8]. The present author [6] gave an alternating
proof of Kuramochi’s result. Here we state the following

THEOREM. There exists an Evan’s harmonic function on hyper-
bolic Riemann surfaces.

2. For the proof of our theorem, we use the theory be Royden’s
compa.ctification. The present method to construct the desired func-
tion is already used partly in [6 and [7.

Let R be an arbitrary Riemann surface and M(R) be the Royden’s
algebra associated with R, i.e. the algebra of all complex-valued
absolutely continuous functions in the sense of Tonelli which are
bounded and of finite Dirichlet integral. The algebra M(R)is a
Banach algebra with the norm ]]fl]=sup([f(z)]; zR)+/D(f)and the
subalgebra M(R) C(R) is dense in M(R) with respect to this norm.
Hence Green’s formula and the Dirichlet principle can be freely
applied to functions in M(R) ([3]).
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Let R* be Royden’s compactification of R, i.e. the compact
Hausdorff space containing R as its open and dense subspace and
every function in M(R) can be continuously extended to R* and M(R)
separates points in R*. In other words, R* is the structure space (or
character space) of the Banach algebra M(R) (E3).

A sequence (f.) of functions on R is said to converge to a function
f on R in B- (or D-) topology if (f) is bounded and converges to
f uniformly on every compact subset of R (or if lim_D(f--f)--O).
If (f) converges to f in B- and D-topology, then we say that (f)
converges to f in BD-topology. The algebra M(R) is complete with
respect to the BD-topology ([3).

Royden’s boundary F of R is the set R*--R. The totality of
regular points in F with respect to the Dirichlet problem is denoted
by z. This set zi is characterized by

--(p;pR*,f(p)--O for any f in M(R)),
where M(R) is the BD-closure of the subalgebra Mo(R) of all the
functions in M(R) with compact supports (see [3 and

Although some of them need a slight modification, the proofs of
the following facts are found in [4.

LEMMA 1. Royden’s algebra M(R), considered as a subspace of
the algebra C(R*) of all complex-valued bounded continuous functions
on R*, is dense in C(R*) with respect to the norm [If II--sup (If(z)[;
zeR).

LEMMA 2. The totality of real-valued functions in M(R) forms
a vector lattice with lattice operations f/g-max (f, g) and fag
min (f, g).
LEMMA 3 (Harmonic Decomposition). Let K be a compact set

in R* such that if the relative boundary 3(K R) is not empty, then
it consists of free analytic Jordan arcs. Then every function f in
M(R) can be uniquely decomposed into the form f--u+g, where
u HD(R--K) and u-f on the set (K R) [J (he.re we promise that
tID(R--K)=(O) if R--K is parabolic). Moreover Ilull<=ll f ll and
D(u,

LEMMA 4 (Maximum Principle). Let U be an open set in R such
that UA--. Then UeSOn,, i.e. there exists no non-zero bounded
harmonic function in U vanishing on U except for a polar set in U.

:. As a corollary of Harnack’s inequality, we get
LEMMA 5. Let u(z, p) be a non-negative function defined on

RR* such that u(z, p) is harmonic in z(R--(p)) for fixed pR and
u(z, p) is continuous in pR* and finitely continuous in pe(R*--(z))
for fixed zeR. Then u(z, p) is continuous on RR* and harmonic
in z (R-- (p)) for fixed p R*.

A non-negative real-valued function f on R is said to be quasi-
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Dirichlet finite if D(min (f, c))< o for every c>0. Then we have
LEMMA 6. If f is quasi-Dirichlet finite on R, then f can be

uniquely eztended to R* so as to be continuous on R*.
By Lemmas 5 and 6, we get
LEMMA 7. Let g(z, w) be Green’s function on R. Then g(z, w)

can be considered to be continuous in wR* and finitely continuous
in w(R*--(z)) for fixed zeR and g(z, p) is a quasi-Dirichlet finite
harmonic function in ze(R--(p)) for fixed peR*.

By this lemma, we can define
G(p, q)=lim,(limg(z, w))

for (p, q)eR*R*, which we call the Green kernel on R*. Then we
get

PROPOSITION 1. The Green kernel satisfies the following condi-
tions:

( a G( z, w) g(z, w) on R R;
b ) G(z, p) =G(p, z) if z is in R;
(c) G(z, p) is harmonic in zR except p;
(d) G(p, q) is continuous in pR* for fixed qeR*;
e) G(z, p) is continuous on RR* and finitely continuous on

RE.
4. Let 9 be an arbitrary set which contains at least one point

and K be a mapping of 99 into e, , where c--. For each
non-empty subset X, we set

D(X) inf,,...,,x< , p).
Since (D(X)) is non-decresing and so we can define

D*(X)-limD(X).
Similarly we set

gnE:(X) sups, .,(infx,,= (p, p)).
Since (n+m)E:+(X)nE:(X)-mE(X), we can define,E*(X)--hm,E (X).
Then we can prove the following similarly as in 6 and 7.

PROPOSITION 2. E*(X) D*(X).
Hereafter we always use notations D* and E for 9--R and. Let z0 be a fixed point in the hyperbolic Riemann surface R

and (r), be a sequence of positive numbers such that

and the level curve (zeR; G(z, Zo)-r) consists of a countable number
of analytic Jordan curves. Moreover we assume that the set

U =(zeR; G(z, z0)
is not relatively compact. Then we get

LEMMA 8. The set U is a subdomain in R and
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We set F=UF. Let (R) be a normal exhaustion of R
such that z0e R. We set K,=U 3R. We denote by S, the
totality of unit positive Borel measures on K, and set

fa(z, w)dtt(z)dl2(w).
Then we have

LEMA 9. There exists a unique measure 12.., in S. such that

I(g,.)-- inf (I(g); t2 S.) and the function V.,(z)-- j-a(z, w) dg.(w)
is a harmonic function on R--K, with V,(z)gI(12,) on R and
V,,(z)--I(pn,) on Kn,.

LEMMA 10. D*(K,.,,)
LEMMA 11. There exists a unique harmonic function w,., on

U/--R such that wn,-O on 3U/ and w,--i on K+,. More-
over w.. is continuous on U.--R.,/ and there exists a constant
a> O such that

w,(p) >_a (pFn; m= 1, 2,...).
LEMMA 12. n*(Z’n)an*(Kn,m) (m=l, 2,..-).
LEMMA 13. There exists a unique continuous function u,, on

R* such that u,--I on K, and un,--0 on d and harmonic in
R--K,. Moreover

f *du,=D(u,) and lim D(u,)--0.

LEMMA 14. I(/,)U,,(Z)= V,(z) on R and I([n,)=2/D(u,).
Lemmas 8 and 13 are obtained by using lemmas in 2. Lemmas

9 and 10 are well known in the potential theory (see for example,
lJ). The function Wn, in Lemma 11 is easily constructed by using
the function G(z, Zo)-r/. Lemma 14 is a direct consequence of
Lemmas 9 and 13. Lemma 12 is one of the key lemmas of our
proof and obtained similarly as in 7_ from Lemma 11. From Prop-
osition 2, Lemmas 10, 12, 13, and 14, it follows that

PROPOSITION 3. E*(Fn)-- c (n=1,2,3,...).
6. Proof of Theorem.1) Let z0 be a fixed point in R. By

Proposition 3, using the standard method, we can construct an HP
function e(z) on R such that e(z0)=l and for any p in F,

lim_e(z)= oo

in the topology of R*. Then
e(z)---_1 e(z)/2

is an HP function on R such that for any p in [J.Fn,
lim ._., e(z) oo

in the topology of R*.
1) If is empty, then by the definition, any HP function on R is an Evans,

harmonic function and so our theorem is trivial. Hence we only treat the case where
is not empty.



78 M. IAKAI [Vol. 39,

It is easy to see that the intersection of I" and the closure of
Fthe set (z) in } is contained in U.= , we get from (,) that

lim. e(z.)-
for any (z) in
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