Some Properties of Completely Normal and 47. **Collectionwise Normal Spaces**

By Jingoro SUZUKI Nara Gakugei University (Comm. by Kinjirô KUNUGI, M.J.A., April 12, 1963)

1. In our previous note $\lceil 4 \rceil$ we have proved the following theorem.

Theorem 1. If for any locally finite family $\{X_{\alpha} | \alpha \in \Omega\}$ of closed subsets of a topological space R there exists a locally finite covering $\{H_{\alpha} \mid \alpha \in \Omega\}$ of closed subsets of R satisfying one of the following equivalent conditions (A), (B), and (C), then R is completely normal and collectionwise normal:

 $H_{\alpha} \cap H_{\beta} \cap (X_{\alpha} \vee X_{\beta}) = X_{\alpha} \cap X_{\beta}, \qquad (\alpha, \beta \in \Omega)$ $H_{\alpha} \cap H_{\alpha} = X_{\alpha} \cap X_{\alpha}, \qquad (\alpha, \beta \in \Omega)$ (A)

(B)

(C) $H_{\alpha} \cap (\widetilde{r \in g} X_r) = X_{\alpha}$ $(\alpha \in \Omega).$

In this paper, in connection with the above theorem we shall establish necessary and sufficient conditions for topological spaces to be completely normal and collectionwise normal (see Theorems 3 and 4).

2. We shall first prove the following theorem.

Theorem 2. Let R be a completely normal space. If $\{X_{\alpha} | \alpha \in \Omega\}$ is a family of closed subsets of R and $\{U_{\alpha} | \alpha \in \Omega\}$ is a locally finite family of open subsets of R such that $X_{\alpha} \subset U_{\alpha}$ for each $\alpha \in \Omega$, then there exists a locally finite closed covering $\{H_{\alpha} | \alpha \in \Omega\}$ of R satisfying one of the equivalent conditions (A), (B), and (C) of Theorem 1.

Proof. If Ω is a finite set, this theorem has already been established (see [4], Theorem 1), so we assume that Ω is infinite. Now, we shall construct a family $\{H_{\alpha} | \alpha \in \Omega\}$ of closed subsets of R satisfying the condition (C) of Theorem 1 by transfinite induction.

Let η be a limit ordinal number such that $\Omega = \{\alpha \mid \alpha < \eta\}$ and let us put $U = \underset{\alpha \in \mathcal{Q}}{\smile} U_{\alpha}, U'_{\mu} = \underset{\alpha > \mu}{\smile} U_{\alpha}, X = \underset{\alpha \in \mathcal{Q}}{\smile} X_{\alpha}, X'_{\mu} = \underset{\alpha > \mu}{\smile} X_{\alpha}$. Let ν be an ordinal number such that $\nu < \eta$. We assume that to every $\mu < \nu$ there exist two closed subsets F_{μ} , F'_{μ} of U satisfying the following conditions:

$$(P_{\mu}) \begin{cases} (1) & U_{\tau} \supset F_{\tau}, \quad (\gamma \leq \mu); \quad U'_{\mu} \supset F'_{\mu} \\ (2) & (\bigvee_{\tau \leq \mu} F_{\tau}) \supset F'_{\mu} = U, \\ (3) & F_{\tau} \frown X = X_{\tau} \\ (4) & F'_{\mu} \frown X = X'_{\mu}. \end{cases}$$

Then we shall construct two closed subsets F_{ν} , F'_{ν} of U satisfying the condition (P_{ν}) .

We shall first show that the relation $\lim_{\mu \leq \nu} \bigcup_{\alpha > \mu} U_{\alpha} = \bigcup_{\mu \geq \nu} U_{\mu}$ holds. It is evident that $_{\mu \subset \nu} \underset{_{\alpha} \supset \mu}{\longrightarrow} U_{\alpha} \supset_{\mu \geq \nu} U_{\mu}$. So conversely, let $x(\in U)$ be any

point not contained in $\underset{\nu \geq \nu}{\longrightarrow} U_{\mu}$. Since $\{U_{\alpha} \mid \alpha \in \Omega\}$ is locally finite there exists the greatest index $\kappa(<\nu)$ such that U_{ε} contains x. Hence x is not contained in $\underset{\nu < \nu}{\longrightarrow} U_{\alpha}$. Consequently, x is not contained in $\underset{\nu < \nu}{\longrightarrow} u_{\alpha} \underset{\nu}{\longrightarrow} U_{\alpha}$. Put $F''_{\nu} = \underset{\mu < \nu}{\longrightarrow} F'_{\mu}$. It is also shown similarly that $F''_{\nu} \frown X = \underset{\nu \geq \nu}{\longrightarrow} X_{\mu}$.

Next, we shall construct $\{F_{\mu} | \mu \leq \nu\}$ and F'_{ν} . Then by $_{\mu < \nu} U'_{\mu} = _{\mu \geq \nu} U_{\mu}$ we have $F''_{\nu} \subset_{\mu \geq \nu} U_{\mu}$. By the assumption of (P_{μ}) , (4) we can see that X_{ν} and X'_{ν} are contained in F''_{ν} . Since $\{(U_{\nu} - U'_{\nu}) \subset (X_{\nu} - X'_{\nu})\} \cap F''_{\nu}$ and $\{(U'_{\nu} - U_{\nu}) \subset (X'_{\nu} - X_{\nu})\} \cap F''_{\nu}$ are separated subsets of completely normal space F''_{ν} , there exist two disjoint open subsets W, W' of F''_{ν} such that $W \supset \{(U_{\nu} - U'_{\nu}) \subset (X_{\nu} - X'_{\nu})\} \cap F''_{\nu}$ and $W' \supset \{(U'_{\nu} - U_{\nu}) \subset (X'_{\nu} - X_{\nu})\} \cap F''_{\nu}$. If we put $F_{\nu} = (F''_{\nu} - W') \supset X_{\nu}$ and $F'_{\nu} = (F''_{\nu} - W) \supset X'_{\nu}$, then F_{ν} and F'_{ν} are closed subsets of U.

We shall prove that $\{F_{\mu} | \mu \leq \nu\}$ and F'_{ν} satisfy the conditions of (P_{ν}) . Since $F''_{\nu} \subset U_{\nu} \subset U'_{\nu}$, we have

$$F''_{\nu} - W' \subset F''_{\nu} - \{(U'_{\nu} - U_{\nu}) \smile (X'_{\nu} - X_{\nu})\} \frown F''_{\nu}$$
$$\subset F''_{\nu} - (U'_{\nu} - U_{\nu})$$
$$\subset U$$

By the assumption of the theorem we have $X_{\nu} \subset U_{\nu}$. Hence, $U_{\nu} \supset (F''_{\nu} - W') \supset X_{\nu} = F_{\nu}$ is concluded. Similarly, $U'_{\nu} \supset F'_{\nu}$ is obtained. Thus, (P_{ν}) , (1) is satisfied. We have (P_{ν}) , (2) by relations $(\underset{\mu < \nu}{\sim} F_{\mu}) \supset F''_{\nu} = U$ and $F_{\nu} \supset F''_{\nu} = F''_{\nu}$. Since

$$F_{\nu} \land X = \{(F_{\nu}'' - W') \land X\} \lor (X_{\nu} \land X)$$

$$\subset [\{F_{\nu}'' - (X_{\nu}' - X_{\nu})\} \land X] \lor X_{\nu}$$

$$= \{F_{\nu}'' \land X - (X_{\nu}' - X_{\nu}) \land X\} \lor X_{\nu}$$

$$= \{_{\mu \ge \nu} X_{\mu} - (X_{\nu}' - X_{\nu})\} \lor X_{\nu}$$

$$= X_{\nu}$$

and $F_{\nu} \cap X \supset X_{\nu}$, we have $F_{\nu} \cap X = X_{\nu}$, that is, (P_{ν}) , (3). Finally, we have (P_{ν}) , (4) using the following relations

$$F'_{\nu} \cap X \subset \{(F''_{\nu} - W) \cap X\} \subset (X'_{\nu} \cap X) \\ \subset \{F''_{\nu} \cap X - (X_{\nu} - X'_{\nu}) \cap X\} \subset X'_{\nu} \\ = \{_{\mu \ge \nu} X_{\mu} - (X_{\nu} - X'_{\nu})\} \subset X'_{\nu} \\ = X'_{\nu}$$

and $F'_{\nu} \supset X \supset X'_{\nu}$.

Since $|\Omega| \ge \aleph_0$ and $\{U_{\alpha} | \alpha \in \Omega\}$ is locally finite, $\{F_{\alpha} | \alpha \in \Omega\}$ is a covering of U. As X is a closed subset of the normal space R, there exists an open set G such that $X \subset G \subset \overline{G} \subset U$. If we put $H_1 = (F_1 \subset \overline{G}) \subset (R-G)$ and $H_{\alpha} = F_{\alpha} \subset \overline{G}(1 < \alpha < \eta)$, then $\{H_{\alpha} | \alpha \in \Omega\}$ is a locally finite closed covering of R satisfying the condition (C) of Theorem 1, q.e.d.

3. We shall now prove our main theorem.

Theorem 3. In order that a topological space R be completely normal and collectionwise normal, it is necessary and sufficient that for any locally finite and order finite family $\{X_{\alpha} | \alpha \in \Omega\}$ of closed subsets of R there exists a locally finite closed covering $\{H_{\alpha} | \alpha \in \Omega\}$ of R satisfing one of the equivalent conditions (A), (B), and (C) of Theorem 1.

Theorem 4. Let R be a topological space having the following property: For any locally finite collection $\{X_{\alpha} | \alpha \in \Omega\}$ of closed subsets of R there exists a locally finite open covering $\{W_{\alpha} | \alpha \in \Omega\}$ of $\underset{\alpha \in \Omega}{\longrightarrow} X_{\alpha}$ such that $X_{\alpha} \subset W_{\alpha}$ for each $\alpha \in \Omega$. In order that R be a completely normal and collectionwise normal space it is necessary and sufficient that there exists a locally finite closed covering $\{H_{\alpha} | \alpha \in \Omega\}$ of R satisfying one of the equivalent conditions (A), (B), and (C) of Theorem 1.

These theroems are easily proved by the above Theorems 1, 2, and the following lemma:

Lemma (Katětov [5]). For a normal space R each of the following properties is equivalent to collectionwise normality:

(a) If $\{X_{\alpha}\}$ is a closed locally finite family in R such that for some positive integer n the intersection of any n+1 members of $\{X_{\alpha}\}$ is empty, then there exists an open locally finite family $\{U_{\alpha}\}$ such that $X_{\alpha} \subset U_{\alpha}$.

(b) For any closed subset X of R, if $\{X_{\alpha}\}$ [respectively, $\{W_{\alpha}\}$] is a closed [respectively, open] locally finite family for the relative topology of X such that $X_{\alpha} \subset W_{\alpha}$, then there exists an open locally finite family $\{U_{\alpha}\}$ in R such that $X_{\alpha} \subset U_{\alpha} \cap X \subset W_{\alpha}$.

By a result of Katětov [5] and Theorem 2 we have the following:

Theorem 5. Let R be countably paracompact, completely normal and collectionwise normal. Then for any locally finite family $\{X_{\alpha} | \alpha \in \Omega\}$ of closed subsets of R there exists a locally finite closed covering $\{H_{\alpha} | \alpha \in \Omega\}$ of R satisfying one of the equivalent conditions (A), (B), and (C) of Theorem 1.

Remark 1. If R is perfectly normal and collectionwise normal, then the above theorem is also true by a result of Dowker [2].

Remark 2. In case R is a fully normal and completely normal space, the above theorem is easily deduced from the construction in the proof of Theorem 3 [3].

References

- [1] R. H. Bing: Metrization of topological spaces, Can. J. Math., 3, 175-186 (1951).
- [2] C. H. Dowker: On countably paracompact spaces, Can. J. Math., 3, 219-224 (1951).
- [3] T. Inokuma: On a characteristic property of completely normal spaces, Proc. Japan Acad., 31, 56-59 (1955).
- [4] J. Suzuki: Some properties of completely normal spaces, Proc. Japan Acad., 33, 19-24 (1957).
- [5] M. Katětov: Extension of locally finite coverings, Colloq. Math., 6, 141-151 (1958).