46. A Remark on General Imbedding Theorems in Dimension Theory

By Jun-iti NAGATA

Department of Mathematics, Osaka City University (Comm. by K. KUNUGI, M.J.A., April 12, 1963)

Once we have constructed [1] a universal *n*-dimensional set for *general* metric spaces which is a rather complicated subset of C. H. Dowker's generalized Hilbert space. In this brief note we shall show that we can find a simpler universal *n*-dimensional set in a countable product of H. J. Kowalsky's star-spaces.

On the other hand, we have found [2] in the product of a generalized Baire 0-dimensional space and the Hilbert-cube a universal countable-dimensional set for metric spaces with a σ -star-finite basis. A universal countable-dimensional set for general metric space will also be found in such a product of star spaces.

Let E_{α} , $\alpha \in A$ be a system of unit segments [0, 1]. By identifying all zeros in $\bigcup \{E_{\alpha} | \alpha \in A\}$ we get a set S. We introduce a metric in S as follows.

 $\rho(x, y) = |x-y|$ if x, y belong to the same segment,

= |x| + |y| if x, y belong to the distinct segments.

Then we get a metric space S called the *star-space* with the index set A. H. J. Kowalsky [3] proved that

a topological space R is metrizable if and only if it can be imbedded in a countable product of star-spaces.

Now we can assert the following theorem in dimension theory.

Theorem 1. A metric space R has (covering) dimension $\leq n$ if and only if it can be imbedded in the subset K_n of a countable product P of star-spaces, where we denote by K_n the set of points in P at most n of whose non-vanishing coordinates are rational.

Proof. To see dim $K_n \leq n$ we decompose K_n as $K_n = \bigcup_{i=0}^n K'_i$ for the sets K'_i of points in P just i of whose non-vanishing coordinates are rational. We consider a given class $a_j, j=1\cdots i$ of i rational numbers with $0 < a_j \leq 1$. Then the set of points in K'_i whose j-th coordinates are equal to a_j is a 0-dimensional closed subset of K'_i . This assertion is proved by the product theorem in dimension theory since it is easily seen that the set of irrational points and zero in a star-space has dimension 0. Hence it follows from the sum-theorem that K'_i as a countable sum of such closed sets is 0-dimensional. This implies by the decomposition theorem that dim $K_n \leq n$.

Conversely, we suppose R is a general metric space with dim $R \leq n$. By Bing's metrization theorem [4], there exists a σ -discrete open basis

$$\mathfrak{W}_m = \{W_{m\alpha} | \alpha \in A_m\}, m = 1, 2, \cdots$$

We can assume without loss of generality that there exist open sets $V_{ma}, \alpha \in A_m, m=1, 2, \cdots$ such that

$$\overline{V}_{m\alpha} = F_{m\alpha} \subset W_{m\alpha},$$

for every neighborhood U(p) of every point p of R there exists m and $\alpha \in A_m$ for which

$$p \in F_{m\alpha} \subset W_{m\alpha} \subset U(p).$$

Putting

$$W_m = \bigcup \{W_{m\alpha} | \alpha \in A_m\},\$$

$$F_m = \bigcup \{F_{m\alpha} | \alpha \in A_m\},\$$

we get open sets W_m and closed sets F_m satisfying $F_m \subset W_m$.

Now we decompose R by the decomposition theorem as $R = \bigcup_{k=1}^{k} R_k$

for 0-dimensional sets R_k . Then we define open sets U_{mr_i} $m=1, 2, \cdots$; r: rational numbers with $0 < r < \sqrt{2}/2m$ such that

- $(1) \qquad F_{m} \subset U_{mr} \subset \overline{U}_{mr'} \subset U_{mr'} \subset \overline{U}_{mr'} \subset W_{m} \quad \text{if} \quad r > r',$
- (2) $\overline{U}_{mr} = \bigcap \{ U_{mr'} | r' < r \}, \ U_{mr} = \bigcup \{ \overline{U}_{mr'} | r' > r \},$
- (3) order $_{p}\{B(U_{mr}) \mid m=1, 2, \cdots, 0 < r < \sqrt{2}/2m, r: rational\} \le k-1$ for each point $p \in R_{k}$,

where B(U) denotes the boundary of a set U, and order $_{p}$ ll denotes the number of elements of a collection ll which contain p. The process to construct U_{mr} is quite parallel to that in the proof of Lemma 4.1 [2], so it will not be mentioned here.

Let $U_{r\alpha}^m = U_{mr} \cap W_{m\alpha}$; then, since each $\{W_{m\alpha} | \alpha \in A_m\}$ is discrete, $U_{r\alpha}^m, m = 1, 2, \dots, \alpha \in A_m, 0 < r < \sqrt{2}/2m, r$: rational are open sets such that

$$F_{m\alpha} \subset U_{r\alpha}^{m} \subset \overline{U}_{r\alpha}^{m} \subset U_{r'\alpha}^{m} \subset \overline{U}_{r'\alpha}^{m} \subset W_{m\alpha} \text{ if } r > r', \\ B(U_{r\alpha}^{m}) = B(U_{mr}) \cap W_{m\alpha}.$$

Hence (3) implies that

(4) order $_{p}\{B(U_{r\alpha}^{m})|0 < r < \sqrt{2}/2m, r: \text{rational}, \alpha \in A_{m}, m=1, 2, \cdots\} \leq k-1 \text{ for each point } p \in R_{k}.$

Now, for each m we consider a star-space S_m with the index set A_m and denote by $E_{\alpha}, \alpha \in A_m$ the unit segments which construct S_m . Let f_m be a mapping of R into S_m defined as follows:

$$\begin{array}{rl} f_m(p) = 0 & \text{if } p \notin W_m, \\ f_m(p) = \sup \left\{ r \mid p \in U_{ra}^m \right\} \in E_a & \text{if } p \in W_{ma}. \\ (f_m(p) = 0 & \text{if } p \in W_{ma} & \text{and } p \notin U_{ra}^m & \text{for every } r.) \end{array}$$

Then it is easy to see that f_m is a continuous mapping such that $f_m(R-W_m)=0$,

$$f_m(F_m) = \sqrt{2}/2m \in E_{\alpha}$$
 for some $\alpha \in A_m$.

By use of (2) we can also easily see that

 $f_m(p) = r \in E_{\alpha}$ if and only if $p \in B(U_{r\alpha}^m)$,

i.e. $f_m(p)$ is non-vanishing and rational if and only if $p \in B(U_r^m)$ for some $\alpha \in A_m$ and r.

Now we consider the topological product $P = \prod_{m=1}^{\infty} S_m$ and its subset K_n mentioned in the theorem. Let us define a mapping f of R into P by

$$f(p) = \{f_m(p) \mid m = 1, 2, \cdots\}.$$

Then it easily follows from the property of f_m and (4) that f is a homeomorphic mapping of R onto a subset of K_n .

In view of the preceding proof we can also assert the following theorem.

Theorem 2. A metric space R is countable-dimensional, i.e. a countable sum of 0-dimensional spaces if and only if it can be imbedded in the subset K_{∞} of a countable product P of star-spaces, where we denote by K_{∞} the set of points in P at most finitely many of whose non-vanishing coordinates are rational.

References

- J. Nagata: On a universal n-dimensional set for metric spaces, Crelle J., 204, 132-138. (1960).
- [2] J. Nagata: On the countable sum of zero-dimensional metric spaces, Fundam. Math., 48, 1-14 (1960).
- [3] H. J. Kowalsky: Einbettung metrischer Räume, Arch. Math., 8, 336-339 (1957).
- [4] R. H. Bing: Metrization of topological spaces, Canad. J. Math., 3, 175-186 (1951).

No. 4]