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65. On Regular Algebraic Systems

A Note on Notes by Iseki, Kovacs, and Lajos

F. M. SIOSON
University of Hawaii

(Comm. by Kinjir6 KUNUGI, M.$.A., May 11, 1963)

L. Kovacs 2], K. Iseki 1], and S. Lajos 3_ characterized
regular rings and semigroups as algebraic systems satisfying the
property RL--RL for any right ideal R and any left ideal L. A
semigroup (S, .) and a ring or semiring (S, +,-) is regular iff for
each s eS there exists an S such that sxs--s. Clearly, this follows
from the statement: for each s eS, there exist x, yeS such that sxys
--s. The two statements are equivalent, for, if for each s eS there
exists an xS such that ss--s, then also there exist a z eS such
that x--xzx-x(zx)--xy and therefore sxys-s.

In this communication we shall give a unified generalization of
the characterizations of Kovacs, Iseki, and Lajos. It turns out that
the description of regularity in terms of ideals is intrinsic to associa-
tive operations in general.

By an algebraic system (A, o,..., On) or simply A is meant a set
A closed under a collection of m-ary operations o and often also
satisfying a fixed set of laws. For instance, an m-ary operation
(...) on A satisfies the associative law iff for each x,..., x._eA,
((....)_,...._)-((x.. ._).. x._ )-... -(..-.
x_....x._x)). A is said to be regular with respect to the operation
(. .) iff for each aeA there exist x., x,. ., x; y y,. ., y;. .; z,
z.,. ., z_ eA such that

((axe.... x)(yay. y) (zz. z_a))-- a.
Note that if A is both associative and regular relative to the oper-
ation, then the preceding identity may be rewritten as follows"
((axe.... )(a.,. y) (zz a)) (a(x. )a. (zz. z_ )a))

--(ava...(...v_xa))--a for some vx,..., v_eA.
A subset S of A constitues a subsystem iff S is closed under the same
operations and satisfies the same fixed laws in A.

Following G. B. Preston [4J, a j-ideal j=l,..., m relative to
the m-ary operation (...) is defined to be a subsystem I such that
for any x,x.,...,xeA, if xeI then (xxx...x)I. The j-ideal
relative to (...) generated by an element aA (usually called a
principal j-ideal) is denoted by

(a)--(AA...a... A) [.J [a].
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A subsystem I which is a j-ideal for each 3"--1,’", m is simply called
an ideal.

THEOREM 1. I any algebraic system which is associative rela-
tive o an m-ary opera$ion (...), the following conditions are equi-
valent:

(1) A is regular relative o he operation (...);

(2) (IL...I)--f I for any set of j-ideals I relative to the
=1

operation;

(a) ((a)(a.).. .(a))- (a) for any set of elements a, a.,. .,
=1

aA;
(4) ((a)(a)....(a)): (a) for each element aeA.

=1
Proof. To prove (1) implies (2) let A be regular relative to the

m-ary operation (...) and let a e f I for any set of m j-ideals I
=1

relative to the operation. Then by regularity there exists x.,...,
x; y, y,. ., y,. ; z,. ., z_ eA such that

((axe.; x)(ya. y) (z z_a)- a.

I being a j-ideal for each j--l,..., m, we thus obtain (axe....x)eI,
(ya... y) I.,..., and (z... z_a) I and hence I(II... I).

=1
Conversely, if a e (IL.... I) then a-- (ii.. i) for i I, j---- 1,..., m,
and therefore a eI for each j--l,..., m. Whence (2) is proved.

(2) implies (3) implies (4) are obvious.

Now to prove (4) implies (1) suppose ((a)(a)...(a))- (a) for

each aeA. Since for each aeA, a e [ (a), then a(bb..., b) where

either b--a or b--(cc....c,) with c--a. Replace any one of the
b’s such that b--a by its equal a--(bb....b). Thus we can write
a in any case in the form

a (bb..., b) ((axe... x)(yla... y)... (zlz..., z_a))
for some x,. ., x; y, y,. ., y; z,. ., z_ eA. This shows that
A is regular with respect to the operation.

The m-ary operation (...) will be cal’led commutative iff for each
x,..., xeA and for each permutation of the integers 1,..., m

THEOREM 2. An algebraic system A which is associative and
commutative elative to an m-ary operation (...) is regular with
respect to the same operation iff every ideal I of A is idempotent,
i.e. (II...I)-I..

Proof. If A is commutative relative to (...), then (aA...A)
--(Aa...A)--... -(AA...a) and hence every j-ideal is also a k-ideal
for all j, k-l,. ., m. Hence by regularity
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(H...I)--II f]I=I for each ideal I in A.
Conversely, suppose every ideal in A is idempotent. If I1, L.,...,

I is any collection of ideals in A, then I is also an ideal and

therefore

=I
inasmuch as /., contains the intersection for each j. Furthermore,

since each Ij, j=l,..., m is also a j-ideal, then (I1L....I)= Ij.
=1

Whence the conclusion follows.
Note that in case (...) is an associative m-ary operation in A,

one may conveniently abbreviate (aa. a) an, (aa a)-- a-l, (area
..a)-a8-, ...,(aa...a)--a"--a/’-. Thus the admissible

exponents of compositions of rank at most 2 are each of the form
kin--k+ 1 for some integer. Proceeding inductively, suppose that
klm--klq-1, k2m--k.+l,..., km--kq-1 are previously known ad-
missible exponents, then the exponent

(;m-;+i)-(k-i)m-;
=I =i =I

o (-’/i’-’/...-/I) is evidently also o the same orm.
Hence every admssb|e exponent o an -ary operation s o the
orm k--;+ I.

An e|ement OA such that (Ozl...z_1)-(z10 z_1)-(Zl
--0 for all x,. ., x_iA is called zero. A nilpoten element aA
is one which satisfies a-/--0 for some integer k greater than 0.

THEOREM 3. An algebraic system A which is commutative and
associative and has a 0 with respect to an m-ary operation (...)
possesses no nilpotent element other than O.

Proof. For each 0#aeA, let [a denote the subsystem of A
generated by a, which may be inductively defined as follows:

(a) a [a;
(b) a e

(c) whenever an’, ..., a’e[a], then also a’+’"/ne[a].
To prove the theorem it suffices to show that 0[a]. We proceed
inductively.

(a) a:0 by assumption;
(b) aA=0. For, if a-0, then by virtue of the associativity,

commutativity, and regularity of the given operation, there exists
xl,..., x_lA such that a--(axla...(...x_la))--((aa...a)x...x_l)
=(ax .x_)--(Ox...x_)--O contrary to (a).

(c) We now show that if an’, ’’’, a are all non-zero elements
of [a] then (an’an...an)--a’’++’"+nmO. Suppose
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Then by a remark above, we have
n=km--kl for i--1,2,...,m.

Since (...) is commutative, it may be assumed without loss of gener-
ality that n--max n. Then

toni’- ,n--(mn-- n)-- -,n-- ,(n--n)--,n+(k--k)m
--(k--k)-- n-l--((k--k)m---(k--k)--m+2)W(m--2)

i=l =1 t=l

n+{,(k--k)--lm--[-](k--k)--2}+(m--2)
=I =I =I
_

n-i-p+(m--2),
1----1

where p is an admissible exponenL Hence, by associativity, com-
mutativity, and regularity of the operation (...), there exist x, x.,., x_ A such that

0 =v- a’-(a’xa’’." (" .X._,an’)) (an’x’’ "X_ )
.--(an,+n..+...+nm+p+(m-2)X,l...x,_)--(a.,,//.../,,(a,aa...axe)x2.. "Xm_l)
(O(aaa ax)x.. "gem- ) --0

a contradiction. Thus every element of [aJ is non-zero and the con-
clusion follows.
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