63. On a Theorem of Cluster Sets

By Kikuji Matsumoto
Mathematical Institute, Nagoya University
(Comm. by Kinjirô KunugI, m.J.A., May 11, 1963)

1. Let D be an arbitrary domain in the z-plane with boundary Γ and let E be a totally disconnected closed set contained in Γ. Supposing that $w=f(z)$ is non-constant, single-valued and meromorphic in D, we associate with each point $z_{0} \in \Gamma$ the following sets of values.
(i) The cluster set $C_{D}\left(f, z_{0}\right) . \quad \alpha \in C_{D}\left(f, z_{0}\right)$ if there exists a sequence of points $\left\{z_{n}\right\}$ with the following properties:

$$
z_{n} \in D, \lim _{n \rightarrow \infty} z_{n}=z_{0} \quad \text { and } \quad \lim _{n \rightarrow \infty} f\left(z_{n}\right)=\alpha
$$

(ii) The boundary cluster set $C_{\Gamma-E}\left(f, z_{0}\right) . \alpha \in C_{\Gamma-E}\left(f, z_{0}\right)$ if there exists a sequence of points $\left\{\zeta_{n}\right\}$ of $\Gamma-\left(\left\{z_{0}\right\} \cup E\right)$ such that

$$
\begin{aligned}
& w_{n} \in C_{D}\left(f, \zeta_{n}\right) \text { for each } n, \\
& z_{0}=\lim _{n \rightarrow \infty} \zeta_{n} \quad \text { and } \quad \alpha=\lim _{n \rightarrow \infty} w_{n} .
\end{aligned}
$$

(iii) The range of values $R_{D}\left(f, z_{0}\right)$. This is the set of values α such that

$$
z_{n} \in D, \lim _{n \rightarrow \infty} z_{n}=z_{0} \text { and } f\left(z_{n}\right)=\alpha \text { for every } n
$$

In the theory of cluster sets, the following theorem is one of the most important. ${ }^{1)}$

ThEOREM. If E is of capacity ${ }^{2)}$ zero and z_{0} is a point of E such that $U\left(z_{0}\right) \frown(\Gamma-E) \neq \phi$ for every neighborhood $U\left(z_{0}\right)$ of z_{0}, then the set

$$
\Omega=C_{D}\left(f, z_{0}\right)-C_{\Gamma-E}\left(f, z_{0}\right)
$$

is empty or open.
In the case where D is the unit disc $|z|<1$, we can replace $C_{\Gamma-E}\left(f, z_{0}\right)$ in this theorem by a considerably smaller set and obtain yet the same assertion (see Ohtsuka [5] and Noshiro [3]). ${ }^{10}$ We shall show in the below that, in the general case where D is an arbitrary domain, we can also replace $C_{\Gamma-E}\left(f, z_{0}\right)$ by a considerably smaller set to obtain the same assertion of the theorem.
2. We now define new sets of values.
(iv) The cross cluster set $C_{D}^{\oplus}\left(f, z_{0}\right) . \quad \alpha \in C_{D}^{\oplus}\left(f, z_{0}\right)$ if there exists a sequence of points $\left\{z_{n}\right\}$ with the following properties:

$$
\begin{gathered}
z_{n} \in D, \Re z_{n}=\Re z_{0} \text { or } \Im z_{n}=\Im z_{0} \text { for each } n,{ }^{3)} \\
\lim _{n \rightarrow \infty} z_{n}=z_{0} \quad \text { and } \lim _{n \rightarrow \infty} f\left(z_{n}\right)=\alpha .
\end{gathered}
$$

[^0]When there is a neighborhood U of z_{0} such that the parts of two
 $C_{D}^{\oplus}\left(f, z_{0}\right)=\phi$.
(v) The cross boundary cluster set $C_{T-E}^{\oplus}\left(f, z_{0}\right)$. This is obtained by replacing the cluster set $C_{D}\left(f, \zeta_{n}\right)$ by the cross cluster set $C_{D}^{\oplus}\left(f, \zeta_{n}\right)$ in the definition (ii) of the boundary cluster set $C_{\Gamma-E}\left(f, z_{0}\right)$.

Then we have the following amelioration of the theorem stated in $\S 1$.

TheOREM 1. If E is of capacity zero and z_{0} is a point of E such that $U\left(z_{0}\right) \frown(\Gamma-E) \neq \phi$ for every neighborhood $U\left(z_{0}\right)$ of z_{0}, then the set

$$
\Omega^{\oplus}=C_{D}\left(f, z_{0}\right)-C_{\Gamma-E}^{\oplus}\left(f, z_{0}\right)
$$

is empty or open.
Proof. The proof is similar to that of the original theorem. Supposing that $\Omega^{\oplus} \neq \phi$, we let w_{0} be an arbitrary point belonging to Ω^{\oplus}. Then there exists a square $S:\left|\Re z-\Re z_{0}\right|=r,\left|\Im z-\Im z_{0}\right|=r$, arbitrarily small, such that $S \subset E=\phi$ and $f(z) \neq w_{0}$ on $S \frown D$. We take here r so small that w_{0} does not belong to the closure M_{r} of the union $\bigcup_{\zeta} C_{D}^{\oplus}(f, \zeta)$ for all ζ belonging to the intersection of $\Gamma-E$ with $\overline{(S)}$: the closure of the interior (S) of S. Let ρ^{\prime} denote the distance of M_{r} from w_{0} and $\rho^{\prime \prime}$ a positive number such that $\left|f(z)-w_{0}\right| \geqq \rho^{\prime \prime}>0$ on $S \frown D$. Let ρ be a positive number such that $0<\rho<\min \left\{\rho^{\prime}, \rho^{\prime \prime}\right\}$. Since w_{0} is a cluster value of $w=f(z)$ at z_{0}, there exists a sequence of points $z_{n} \in(S) \frown D(n=1,2, \cdots)$ tending to z_{0} such that $w_{n}=f\left(z_{n}\right)$ tends to w_{0}. The inverse image D_{0} of $(c):\left|w-w_{0}\right|<\rho$ in $(S) \frown D$ consists of at most a countable number of connected components. The component containing z_{n} is denoted by Δ_{n} (which may coincide with other $\Delta_{n^{\prime}}$).

First we shall prove that, for each n, the intersection Z of the closure $\bar{\Delta}_{n}$ of Δ_{n} with Γ is a closed set of capacity zero. To prove this, it is enough to show that the set $Z-E$ is a countable set. We note that, for each point ζ of $Z-E$, there is a positive number $r(\zeta)$ such that the parts of two lines $L_{\xi}: \Im z=\mathfrak{J} \zeta$ and $L_{\xi}^{\prime}: \mathfrak{\Re z = \Re \zeta \text { lying on }}$ $|z-\zeta| \leqq r(\zeta)$ do not intersect Δ_{n}. For otherwise $C_{D}^{\oplus}(f, \zeta)$ would contain a value belonging to $\overline{(c)}:\left|w-w_{0}\right| \leqq \rho$ and we would be led to a contradiction that M_{r} intersects $\overline{(c)}$. Set

Then

$$
Z_{p}=\left\{\zeta \in Z-E ; r(\zeta)>\frac{1}{p}\right\}, \quad(p=1,2, \cdots)
$$

$$
Z-E=\bigcup_{p=1}^{\infty} Z_{p} .
$$

We now prove that each Z_{p} consists of only isolated points so that Z_{p}, consequently $Z-E$, is countable. Contrary, suppose that Z_{p}
contains a point ζ_{0} which is not isolated. Then there exists a sequence of points $\zeta_{k} \in Z_{p}(k=1,2, \cdots)$ tending to ζ_{0}. It is easily seen that there exists a point z_{1} in Δ_{n} which lies outside of the square $S_{5_{0}}$: $\left|\Re z-\Re \zeta_{0}\right|=1 / p,\left|\Im z-\Im \zeta_{0}\right|=1 / p$. Suppose that an infinite number of ζ_{k} do not lie on the lines $L_{\zeta_{0}}: \mathfrak{J} z=\mathfrak{J} \zeta_{0}$ and $L_{5_{0}}^{\prime}: \Re z=\Re \zeta_{0}$. Then there is a subsequence $\left\{\zeta_{k_{j}}\right\}$ of $\left\{\zeta_{k}\right\}$ tending to ζ_{0} outside of $L_{5_{0}} \smile L_{5_{0}}^{\prime}$ and there appears a pair ($\zeta_{k j}, \zeta_{k j^{\prime}}$) among $\left\{\zeta_{k_{j}}\right\}$ such that $\zeta_{k^{\prime}{ }^{\prime}}$ lies inside of the rectangle R with sides contained in $L_{\xi_{0}}, L_{\xi_{0}}^{\prime}, L_{\zeta_{k_{j}}}$ and $L_{\zeta_{k j}}^{\prime}$. This is impossible. For $\zeta_{k j^{\prime}}$ is a boundary point of Δ_{n} so that there is a point z^{\prime} of Δ_{n} arbitrarily near $\zeta_{k_{j^{\prime}}}$ and we can join z^{\prime} and z_{1} with a continuous curve in the domain Δ_{n}. But on the other hand this continuous curve can not intersect any side of R since ζ_{0} and $\zeta_{k j}$ are points of Z_{p}. Contradiction. Thus we may assume that $\Re \zeta_{k}=\Re \zeta_{0}$ and $\mathfrak{J} \zeta_{1}>\mathfrak{J} \zeta_{2}>\cdots \rightarrow \mathfrak{J} \zeta_{0}$. Since every ζ_{k} is a boundary point of Δ_{n}, we can find a point ζ_{k}^{\prime} of Δ_{n} arbitrarily near ζ_{k} and join it and z_{1} with a continuous curve Λ_{k} in the domain Δ_{n} which can not intersect $\bigcup_{k=1}^{\infty}\left(L_{\tau_{k}} \cap\left(\overline{S_{5_{0}}}\right)\right.$, where we denote by $\left(\overline{S_{5_{0}}}\right)$ the closure of the interior of $S_{\zeta_{0}}$. Hence a subsequence of $\left\{\Lambda_{k}\right\}, \Lambda_{k} \subset \Delta_{n}$, and the sequence of segment $L_{\zeta_{k}} \frown\left(\overline{S_{5_{0}}}\right),\left(L_{\xi_{k}} \frown\left(\overline{S_{\xi_{0}}}\right)\right) \frown \Delta_{n}=\phi$, simultaneously cluster to at least the left or the right side of ζ_{0} of the segment $L_{\zeta_{0}} \frown\left(\overline{S_{\xi_{0}}}\right)$ and we see that at least one of them, we denote it by L, is contained in Z. Since E is of capacity zero, $L-E$ is not empty. Let ζ be a point of $L-E$. Then, for any $r>0, L_{\zeta}^{\prime} \cap\{|z-\zeta| \leqq r\}$ intersects some Λ_{k}, consequently Δ_{n}; this contradicts that ζ belongs to some $Z_{p^{\prime}}$. Thus Z_{p}^{\prime} consists of isolated points and hence is countable. We can conclude that $Z-E$ is countable and is of capacity zero.

Suppose that there is an infinite number of distinct components Δ_{n}. In this case, we assume for simplicity that $\Delta_{n} \neq \Delta_{m}$ if $n \neq m$. Then $\Delta_{n}(n=1,2, \cdots)$ converges to z_{0}. For, if not, there is a square $S^{\prime}:\left|\Re z-\Re z_{0}\right|=r^{\prime},\left|\Im z-\Im z_{0}\right|=r^{\prime}\left(r^{\prime}<r\right)$ such that $S^{\prime} \frown E=\phi$ and $S^{\prime} \frown$ $\Delta_{n_{\nu}} \neq \phi(\nu=1,2, \cdots)$ for a subsequence $\left\{\Delta_{n_{\nu}}\right\}$ of $\left\{\Delta_{n}\right\}$. Let ζ_{ν} be a boundary point of $\Delta_{n_{\nu}}$ on the square S^{\prime} and ζ_{∞} an accumulation point of the sequence $\left\{\zeta_{\nu}\right\}$. Clearly $f\left(\zeta_{\nu}\right)$ lies on the circle $c:\left|w-w_{0}\right|=\rho$. It is also clear that $\zeta_{\infty} \in(\Gamma-E) \cup D$. This leads us to a contradiction because M_{r} meets the circle c if $\zeta_{\infty} \in \Gamma-E$, or else infinitely many of the level curves: $\left|f(z)-w_{0}\right|=\rho$ meet a small neighborhood of ζ_{∞} inside of D if $\zeta_{\infty} \in D$. Since for each $\Delta_{n}, \Gamma \frown \bar{\Delta}_{n}$ is of capacity zero as we have seen in the above, the value-set $D_{n}=f\left(\Delta_{n}\right)$ covers (c) with possible exception of capacity zero and hence the closure $\bar{D}_{n}=\overline{(c)}$: $\left|w-w_{0}\right| \leqq \rho$. Noticing that Δ_{n} converges to z_{0}, we see that $C_{D}\left(f, z_{0}\right)$ $\supset \bar{c})$.

Next we consider the case where there is a finite number of
distinct components Δ_{n}. In this case, there is at least one component, say Δ_{1}, containing a subsequence $\left\{z_{n_{\nu}}\right\}$ of $\left\{z_{n}\right\}$, and the boundary Λ of Δ_{1} satisfies the condition that $U\left(z_{0}\right) \frown(\Lambda-Z) \neq \phi$ for every neighborhood of z_{0}, where $Z=\Gamma \frown \bar{\Delta}_{1}$. Since Z is a closed set of capacity zero, we can take Δ_{1}, Λ and Z as D, Γ and E in the theorem stated in $\S 1$ respectively and have $C_{A_{1}}\left(f, z_{0}\right) \supset \overline{(c)}$. Obviously $C_{D}\left(f, z_{0}\right) \supset C_{A_{1}}\left(f, z_{0}\right)$ and hence $C_{D}\left(f, z_{0}\right) \supset(\bar{c})$.

Thus we have in both cases $C_{D}\left(f, z_{0}\right) \supset(\bar{c})$. On the other hand, we have taken ρ so small that $M_{r} \frown\left\{\left|w-w_{0}\right| \leqq \rho\right\}=\phi$. Therefore $\Omega^{\oplus}=C_{D}\left(f, z_{0}\right)-C_{F-E}^{\oplus}\left(f, z_{0}\right) \supset(c) . \quad w_{0}$ is an interior point of Ω^{\oplus} and Ω^{\oplus} is open because of arbitrariness of $w_{0} \in \Omega^{\oplus}$. Our proof is now complete.
3. By the same arguments as in the classical case, we can prove also the following theorems.

ThEOREM 2. Under the same assumption as in Theorem 1, $R_{D}\left(f, z_{0}\right)$ covers Ω^{\oplus} except for a possible set of capacity zero.

Theorem 3. If $\Omega^{\oplus}-R_{D}\left(f, z_{0}\right) \neq \phi$ in Theorem 2 , then each value α of $\Omega^{\oplus}-R_{D}\left(f, z_{0}\right)$ is an asymptotic value of $f(z)$ at z_{0} or there is a sequence of points $\zeta_{n} \in \Gamma(n=1,2, \cdots)$ tending to z_{0} such that α is an asymptotic value of $f(z)$ at each ζ_{n}.

Theorem 4. In Theorem 2, if each point of E is contained in a non-degenerate connected component of Γ, then $R_{D}\left(f, z_{0}\right)$ covers every connected component of the open set Ω^{\oplus} except for at most two values (an amelioration of a theorem of Hervé [1]).

Remark. We can change slightly the definitions of the cross cluster set and the cross boundary cluster set to obtain the same results as above. For instance, we change, in the definiton (iv), the condition that $\Re z_{n}=\Re z_{0}$ or $\Im z_{n}=\Im z_{0}$ for each n by the condition that $\left|z_{n}\right|=\left|z_{0}\right|$ or $\arg z_{n}=\arg z_{0}$ for each n and define the cross boundary cluster set $C_{T-E}\left(f, z_{0}\right)$ using this new cross cluster set. In the case where D is the unit disc $|z|<1$, this $C_{T-E}^{\oplus}\left(f, z_{0}\right)$ coincides with the boundary cluster set of Ohtsuka [5] and Lohwater [2].

References

[1] M. Hervé: Sur les valeurs omises par une fonction méromorphe, C. R. Acad. Sci. Paris, 240, 718-720 (1955).
[2] A. J. Lohwater: The boundary values of a class of meromorphic functions, Duke Math. J., 19, 243-252 (1952).
[3] K. Noshiro: Cluster set of functions meromorphic in the unit circle, Proc. Nat. Acad. Sci. U.S.A., 41, 398-401 (1955).
[4] K. Noshiro: Cluster Sets, Berlin (1960).
[5] M. Ohtsuka: On the cluster sets of analytic functions in a Jordan domain, J. Math. Soc. Japan, 2, 1-15 (1950).

[^0]: 1) Cf. Noshiro [4].
 2) In this note, capacity means always logarithmic capacity.
 3) For a complex number z, we denote by $\Re z$ and $\mathfrak{\Im} z$ the real and the imaginary part of z respectively.
