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76. Note on the Modular Forms

By Koziro IWASAKI
Musashi Institute of Technology, Tokyo
(Comm. by Zyoiti SUETUNA, M.J.A., June 12, 1963)

1. In his paper [2] Bochner treated the modular forms of level
1. We shall add a little to his result. In the following we shall
use freely the notaions and the results in the papers of Bochner and
of ourselves [5].

2. By the theory of Bochner we have

Theorem of Bochner. Let i and k be positive numbers and
f(2) be an analytic function defined on the upper half plane such

that f(z+2)=f(2) and f(z)=i<i>kf<— l) Let ﬁ]ane%’” be the
2 2 n=0
Fourier series of f(z) and Sla,n"° be convergent for some s. Then
n=0
;é%an¢(J7;)::jc;é%an722k¢(dqa)

for any ¢ in P, where T,,.¢ is the Bochner transform of ¢.
From now we shall consider the case where 2=1,%k is an even

number, a,=0 and f(z)=z"*f <—-1—> In this case iane2”"2i is a cusp
V4 n=1

form of dimension —k and of level 1. By the general theory of cusp

form (Hecke [4] p. 652) we know 29% converges absolutely for

n=1M
1—0;—1. Using the above theorem of Bochner we can prove

Proposition 1. Let k be an even natural number and >)a,e* "
n=1

Re s>

be a cusp form of dimension —k and of level 1. If f(x) is a func-

tion of class C= such that ian FWn) is convergent and

n=1
b 3
f xk+T
0

<—d—>2f (ac)‘ dx exists, then
xdx

©0 — k —
"E=1amf(‘/n )2(_1)—2_q§anT1,2kf('\//n )-
Proof. We have | T, ,.f(n)| =0(n"%-T) by Proposition 4 in [5].
Therefore Z”a,, Tf(Jn) is absolutely convergent by Hecke’s theorem.
n=1

Now we take functions ¢,(x), ¢s(),- -+ in L, such that

()= f () for 0<z<ym,
Pn(2)=0 for x>+Jm+1 and

lon(@)| < | f(Wm)| for Jm<w<Jm+1.
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Then
S ,euldm)=(—1)% 2a,T, upa(n) and

ilangom(«/‘%-)= ﬁlan Ff(Wn) converges to i a,f(Wn).

n= n= n=1

On the other hand we obtain by Proposition 4 in [5]
EanTszf(«/-’i?)-—’Z_,‘lanTl,gngm(M)

:0( Sla,|n-5-+ f e <_‘?_>2(f(x)—¢m(x)) | dw)

of [ o)

m

And the last term converges to 0 if m tends to infinity. (Q.E.D.)
3. We shall apply Proposition 1 to the function f(x)=x""J,(ax)
with suitable number », where « is a positive number. Because

FWn)=0(n" " 4) and Z—E is absolutely convergent for Re s>k+1

Z‘, a,f(¥n) converges absolutely if v>E+ E. On the other hand, we
n=1

r

have

: <xd >f(x).dw<c+cf T,
since
(L) r@=a12, a0).

Therefore the integral converges for v>k.
According to Bateman [1] p. 48 (7) we have

_% v—k—l— AN
T1,2k{90'”J,,(47ufZ=—w)}={é T F(v-—-k—l-‘l)(e x%) for 0<z<+ ¢,
0 for x>4y¢&,

if y+1>%>0 and £>0.
Thus we can apply Proposition 1 to x **"J,, (4ny ¢ x), where

'r>—;‘13:, and we get
b & (2ny s .
Ean T, (A En ) =(—1)3 I +1) 0<E<e a,(6—n)".
Therefore

Fotr 1
> 4, (§—n) =0T 9).
0<n<é
Proposition 2. If Sla,e*"* is a cusp form of even dimension
n=1

—k and of level 1 and ”r>%, then

Sa.(E)YF 0 uniEn)
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18 locally uniformly convergent and its value is equal to
& (2n)
-1 _(2n) —n).
(=1)2 l"('r‘—i—l)o<n2<ea"(é ")

(This equality is proved by Bochner in more generalized form.
See [2], p. 855, Theorem 11. But only the Abel summability of the
infinite series is shown there.)

Corollary. With the same mnotation as in Proposition 2
S a,(6—ny =0(E T T )
0<n<é

Jor any real number r greater than l

4. We shall now deal with the case r=0.
o k —_—
Proposition 3. The series a(%)Taan(hx/ ng) is umiformly

convergent to (—~1)‘]2c‘ Sa, in any interval [£,, & ] which contains no
n<é
wnteger.

Proof. The method of the proof of this proposition is quite
similar to Hardy’s in [8]. We begin with stating the results on
cusp forms proved by Hecke in [4] (p. 651):

@) a,=0(n%),

Etl

8) lay|+---+]a,|=0mn"7).
and
k+1

7) iann'* is absolutely convergent for s> 2
n=1

Let us denote

_ (=¥ oy
Ar(x)—n—;——w%an(x n)

for any non-negative number 7 and
&
Aw)= A —(~DF L a()

where a(x) equals to a, if = is a natural integer and equals to 0
otherwise. Clearly

dA @

~%001(.@;4,(%) and Of Aw)do=A,(z).
Put

S(z, N)=§=1an(%)% T (dnf 7w ).
Then
S(z, N)-(%)‘z‘ A(N)T (4cV Nz
- _x%"ﬁla,, f YUt T (At )dt

n
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k+1 N N+l —
=272 2 >.a, f t~"2 J,,(dnvat)dt
n=1

=273 [ Y A0t Ay TE )d.
0
On the other hand we have
N —_—
f AT, (4yaE )t
0

— 1 AN (AN f AT (At dt,
2y 27y 2 !
Therefore we get
x\ & —~—— p \ AL S
S, N)=<ﬁ> . AO(N)Jk(4nJNx)+2n(—Z\—[> T A,(N)J,,,(4xVNz)

9 N p _
L drr f AT, (Arat)dt.
0

By the estimation (8) and Jv(z)=0(z'%) the first term on the right
hand side is equal to O(NV T log N) locally uniformly for x. And by

Corollary of Proposition 2 the second term is equal to O(N ’%) locally
uniformly for «.
Let us denote the last term with K(x, N). Then we have
S(x, N)=K(x, N)-+o(1)
and

K(z, N)=(—1)72zz" 5 Sa,n "5 f T (A TE) T, (A )t
n=1
0

=(— 1)29: 3 Ea n-E 4’”/WJ,M(u)J,H1(«/%u)du.

n=1
0

@ (0<a<l)
Because f T, @ (aw)=l L (@=1)
J 2
0 (a>1),
we have B
K@, N)=A@)—(= )7 T San 5 [Ty 2 u)du.
nt v v

Now we shall show that if N tends to the infinity K(x, N)
=A(x)+0(1) uniformly in any interval [z, %,] which contains no
integer. Since

J,(2)= «/__cos< >+O(z‘7),
we have
Jk+z(u)Jk+1<x/_;iu>=%w%n‘%u‘lcos(u——Z—n—%)

X cos <\/%u— %—ﬂ—%ﬂ)—l—O(n'%u-z)
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uniformly for x in [«;, #,]. Therefore
K(x, N)—A(»)

=(— 1)—-7—1{x%*%ﬁann"’;“—%fwu‘l((—l)’c”cos ((«/% +1>u>

n=1 -
4V Nz

([ s of o )
15
T

=(-pF Lot San bt (e [T 2
net . PO N
—sgn. (V7 —T) f Sm“du>+0( -5,
U

s VNI A=A |
where sgn (0) means 0, and we obtain

K, N)-——A(x):O(né;l]anln“{cz“%(N‘_lf(«/—w_-l-«/W)" +N-%|m—«/ﬂ%>

+O(NT)=0(N-7%)
uniformly for « in [«,, z,] if this interval contains no integer. Thus
we have proved Proposition 3.
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