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Let C(X) be the algebra of all complex-valued continuous functions
on a compact Hausdorff space X. By a function algebra we mean a
closed (by supremum norm) subalgebra in C(X) containing constants
and separating points of X. For FX, let fIF be the restriction
of the function f to F and A]F--{flF;feA}. We easily see that
for any closed subset F containing the Silov boundary 3A of A (cf.
[1], [6), A]F is closed in C(F). Conversely, it is natural to raise
the following question: Let Fo be a closed subset in X and let
be closed in C(F) for any closed subset F containing Fo. Then, does
F0 contain 3A? The main purpose of this note is to answer the
question under certain conditions (Theorems 1 and 2). The proof of
Theorem 1 is a modification of that of Glicksberg’s theorem (cf. [3])
and we obtain the Glicksberg’s theorem as a corollary.

Let A be a function algebra on X. Then there is a unique minimal
closed subset E of X such that any continuous function zero on E
is in A. This closed subset E is called the essential set of A. A
is an essential algebra if the essential set of A is X (cf. [2]). A
function algebra A is said to be an antisymmetric algebra (or an
analytic algebra) if any real-valued function in A is always constant
(or any function in A vanishing on a non-empty open set in X is
always identically zero) (cf. [4]). An analytic algebra is antisymmetric
and an antisymmetric algebra is an essential algebra (cf. [4]).

Our main theorem is the following
Theorem 1. Let A be an essential algebra and let Fo be a closed

subset in X. If A IF is closed in C(F) for any closed subset F con-
taining Fo, then Fo contains the Silov boundary A of A. *)

Proof. We set first F--{y]yX, If(y)]=< suplf(x)] for any fA}.
Then we see that F, is a closed set in X containing F0. If F--X,
then suplf(x)]=sup]f(x)[=sup]f(x)] for any feA, so Fo3A. There-

fore, in order to prove the theorem we need only to show that F--X.
Suppose the contrary: X4: F. We can show first that there is a
function f eA such that f(x)=l on P and f(x)=O on Q for any closed
set P and for any closed set Q with QF, PQ=O. For, let p,q

*) After this paper had been accepted for publication, Prof. I. Glicksberg informed
me that this theorem can be also proved by direct use of his theorem -3].
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be two distinct points with p, q F. Since p F, there is ageA such
that 1-g(p)>sup g(x) I, so there is a geA such that g(p)--I and

g(x)--O for any xF since A]F(p) is closed in C(F(p)). Thus
we have a function g.A such that g(p)--I and g.(x)-O on F(q).
Therefore, by the similar method as Glicksberg (3, p. 15-9) we obtain
a function feA such that f(x)-I on P and f(x)-O on Q with QF,
PQ--O.

Now, Katznelson has recently introduced the notion of bounded-
ness of the algebra A at a point in X (cf. [5 and [3). We have
then the ollowing lemmas:

Lemma 1. Let V and V. be open in X--F, and let A be bounded
on each V. Then A is bounded on every closed subset F of V

Lemma 2. If F is a closed set in X--F and A is bounded at
each x in F, then there is an open set VF on which A is bounded.

Lemma 3. There are at most finitely many x in X--F where
A is not bounded.

These lemmas can be proved from the existence of a function

f sA such that f(x)--I on P and f(x)-O on Q with QF, PQ=O
(by the similar method as [3, Lemmas 1,2, and 3).

To continue the proof of our theorem, let M be the finite set of
all points in X--F where A is not bounded. Put D--FM. If
D--X, then M=X--F is open and finite, so any point of M is an
isolated point. We see easily that an isolated point is bounded, so
D evX. Since A is an essential algebra, there is a continuous function

f0 such that f0 A and f0(x)=0 for any xD. Let / be a complex-
valued measure such that /(f0)--I and /(f)-0 or any fA. We
shall next prove that /(P)-0 for any closed set P with PD--O.
Let U0 be an open set with X--PUoUoD. For any positive
number s, we can find an open set V P with [/1 (V--P) , V U0- O,
where ]Zl denotes the total variation of/. Set H=X-- U0. By Lemma 2
A is bounded on a neighborhood of H; there is a constant c+/- for
which, whenever K is closed andKH, each idempotent in the quotient
algebra A/kK has norm c,, where kK denotes the set {f e A" f(K)--0}
(cf. 3, [5_). Since X--VD, there is a function lea such that
f--1 on P and f-0 on X-V. If we set K=P(H--V), the above
function f is an idempotent in A/kK. Therefore, there is an heA
such that h(x)--I on P, h(x)-O on H--V and IIhl[cn. And we
have finally the following function h: h eA, h(x)-I on P, h(x)-O on
X--V and hilum (m is a positive number which is independent of
V and so, of s). In fact, h-hho is a desired one, if h0 denotes a fixed

function e A such that ho(x)=l on P and ho(x)-O on Uo.
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Thus,

and

O-fhdz-fhdt+.fhd+fhd
X X-V V-P

V-P X-V

so I(P) l-l fhd[<
Since s is arbitrary, (P)-0, that is, (P)-0 for any closed subset
P in X-D. Since the function f0 has the properties that z(f0)--I

and
X X--D X--D

since (P)--0 for any closed subset P in X--D. This contradiction
shows that Fo OA.

Remark. 1 In the Theorem 1, the condition of essentiality of
A is necessary. Let A be an function algebra on a compact Haus-
dorf space Y and let C(Z) be the algebra of all complex-valued con-
tinuous functions on a compact Hausdorff space Z. Let X= YZ and
let Y and Z be both open in X and YZ=O. If we set A--A@C(Z)

{f e C(X)" f equals some f eA on Y and equals some f C(Z) on Z],
A is not an essential algebra. We have easily that OAZ. Let F
be a closed set in X with FZ, F#Z. If we set Fo--YF, we
see that for any closed subset FFo, A IF is closed in C(F). But
Fo 0A since F0Z--

(2) We consider the following problem in place of Theorem 1:
Let A be an essential algebra and let Fo be a closed subset in X
having the non-empty interior. Let A IFo be closed in C(Fo). Then,
does Fo contain 3A? If A is analytic, we can easily prove that
FoDOA under the above hypothesis. But, if A is essential (or anti-
symmetric), the conclusion is negative. For example, let X be the
set consisting of the unit circle and the origin in the unit disc and
let A be the function algebra of the restriction on X of the algebra
A0, where A0 denotes the set of all continuous function on the unit
disc analytic on the open unit disc. If we put he origin as F0,
Fo , OA.

By Theorem 1, we have
Theorem 2. Let A be an arbitrary function algebra and let Fo

be a closed subset in X which is contained in the essential set E of
A. If A IF is closed in C(F) for any closed subset F containing Fo,
then 3AE is non-empty and FoDOAE.

Proof. By hypothesis, the function algebra B=AIE has the
following properties" B is an essential algebra and BF is closed in
C(F) for any closed F in E containing Fo. By Theorem 1, FoDOB.
But 3BDOAE, since 3Ax if and only if for any neighborhood .U
of x, there is an leA such that UD{y[yeX,
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Therefore, Fo3BAE. We show finally that 3AE#O. If
3AE=O, there is a function fA such that f(x)-O on E and
on 3A. If we set g-l--f, then g(x)-O on 3A and g(x)O. This is
a contradiction, so 3AE#O.

From this theorem we have
Corollary (Glicksberg). Let A be an arbitrary function algebra.

If A IF is closed in C(F) for any closed set F in X, then A-C(X).
Proof. If A-C(X), then the essential set E has at least two

points, say p, q. By hypothesis, A IF is closed in C(F) for any closed
Fp and A IF is closed in C(F) for any closed Fq. By Theorem 2,
(p)--3AE-(q). This contradiction shows that A-C(X).
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