95. A Classification of Orientable Surfaces in 4-Space

By Hiroshi Noguchi
Waseda University
(Comm. by Kinjirô Kunugi, M.J.A., Sept. 12, 1963)

Things will be considered only from the piecewise-linear (or semilinear) and combinatorial point of view. Terminology relies heavily on [4].

Let M_{i} be a closed (orientable) oriented surface in an (orientable) oriented 4 -manifold W_{i} without boundary, $i=1,2$. Then M_{1} is $i s o-$ neighboring to M_{2} if there are a regular neighborhood U_{i} of M_{i} in W_{i} and an onto, orientation preserving homeomorphism $\psi: U_{1} \rightarrow U_{2}$ such that $\psi\left(M_{1}\right)=M_{2}$ where $\psi \mid M_{1}$ is orientation preserving and where the orientation of U_{i} is induced from W_{i}.

By Theorem 1 of [4], the iso-neighboring relation is an equivalence relation, and the collection of singularities of surface settled by [3] is an invariance under the iso-neighboring relation.

Another invariance may be defined as follows. Let a closed oriented surface M be in an oriented 4-manifold W without boundary, and let K and L be simplicial subdivisions of M and W respectively such that K is a subcomplex of L, where it is assumed without loss of generality that for each (closed) simplex of L the intersection of the simplex and M is either empty or a simplex of K.

For each vertex Δ of K, ∇ and \square denote the 2 -, 4 -cells dual to Δ in K and L respectively. Then $\partial \nabla$ and $\partial \square$ are a circle and a 3sphere respectively such that $\partial \nabla \subset \partial \square$, where ∂X denotes the boundary of X. Then the sum U of all 3 -cells dual to 1 -simplices (of K), incident to Δ, in L is a regular neighborhood of $\partial \nabla$ in $\partial \square$ by [4], whose boundary is a torus T. If orientations of $\partial \nabla$ and $\partial \square$ are induced from the orientation of ∇ and \square which are naturally induced from M and W respectively, then the oriented pair $\partial \nabla, \partial \square$ may be regarded as a knot. Then, by [2], the meridian a and the longitude b are defined for the knot (where a and b are 1-cycles on T). Let Δ_{0} be a fixed vertex of K. Then the cycle $\sum_{j} b_{j}$ is homologous to $w a_{0}$ in $\bigcup_{j} T_{j}$ for some integer w where j varies on vertices Δ_{j} of K. It is proved that the integer w, called the Stiefel-Whitney number, is an invariance of M in W under the iso-neighboring relation. The proof is carried out by the elementary routine of algebraic topology ; w is independent of choice of Δ_{0}, and of subdivisions K, L concerned, so that it is invariant. A simple proof will be supplied in the subsequent paper by R. Takase [6].

Then the (dual) skelton-wise extension scheme of homeomorphism described in [4] and the argument in [1] furnish the proof of the main result;

Theorem A. Let M_{i} be a closed oriented surface in an oriented 4-manifold W_{i} without boundary, $i=1,2$, such that M_{1} and M_{2} are homeomorphic. Then M_{1} and M_{2} are iso-neighboring if and only if they have same collection of singularities and same Stiefel-Whitney number.

By the argument due to [5], it is shown that $w=0$ if M is in (euclidean) 4-space. Therefore

Corollary to Theorem A. Let M_{1} and M_{2} be closed oriented surfaces in 4-space such that M_{1} and M_{2} are homeomorphic. Then M_{1} and M_{2} are iso-neighboring if and only if they have same collection of singularities.

A closed orientable surface M may be imbedded in a 3 -space, and then whose regular neighborhood in a 4 -space containing the 3 -space is the product of M and a 2-cell. Hence

Theorem B. If a closed surface M in 4-space R is locally flat (=no singular point) then the boundary of regular neighborhood of M in R is the product of M and a circle.

Theorem B may be false if M is not locally flat.

References

[1] R. Baer: Isotopie von Kurven auf orientierbaren geschlossenen Flächen und ihr Zusammenhang mit der topologischen Deformation der Flächen, Journ. reine angew. Math., 159, 101-116 (1928).
[2] R. H. Fox: On the complementary domains of a certain pair of inequivalent knots, Indag. Math., 14, 37-40 (1952).
[3] R. H. Fox and J. Milnor: Singularities of 2 -spheres in 4 -space and equivalence of knots, Bulletin Amer. Math. Soc., 63, 406 (1957).
[4] H. Noguchi: The thickening of combinatorial n-manifolds in ($n+1$)-space, Osaka, Math. J., 12, 97-112 (1960). And Proc. Japan. Acad., 36, 70-71 (1960).
[5] H. Seifert: Algebraishe Approximation von Mannigfaltigkeiten, Math. Zeitsch. 41, 1-17 (1936).
[6] R. Takase: Note on orientable surfaces in 4-space, Proc. Japan Acad., 39, 424 (1963).

