94. Notes on (m, n)-Ideals. I

By Sándor LAJOS
K. Marx University, Budapest, Hungary
(Comm. by Kinjirô Kunugi, M.J.A., Sept. 12, 1963)
Let S be a semigroup. A subsemigroup A of S is called (m, n)ideal of S, if A satisfies the condition (1)

$$
A^{m} S A^{n} \subseteq A
$$

where m, n are non-negative integers (A^{m} is suppressed if $m=0$). By a proper (m, n)-ideal we mean an (m, n)-ideal, which is a proper subset of S. The concept of (m, n)-ideal is a generalization of one-sided (left or right) ideals in semigroups and was introduced in [2]. (See also [3], [4], [5], [6] and [1].)

In this note we prove some theorems on (m, n)-ideals.
Theorem 1. Let S be a semigroup, T be a subsemigroup of S and let A be an (m, n)-ideal of S. Then the intersection $A \cap T$ is an (m, n)-ideal of the semigroup T.

Proof. The intersection $A \cap T$ evidently is a subsemigroup of S. We show that $A \cap T$ satisfies (1). First, we see that
$(A \cap T)^{m} T(A \cap T)^{n} \subseteq A^{m} S A^{n} \subseteq A$
because of A is an (m, n)-ideal of S. Secondly
(3) $\quad(A \cap T)^{m} T(A \cap T)^{n} \subseteq T^{m} T T^{n} \subseteq T$
therefore (2) and (3) imply

$$
(A \cap T)^{n} T(A \cap T)^{n} \subseteq A \cap T
$$

that is the intersection $A \cap T$ is an (m, n)-ideal of T.
Theorem 2. Let S be a semigroup, A be an (m, n)-ideal of S and let B be a subset of S satisfying either $A B \subseteq A$ or $B A \subseteq A$. Then the products $A B$ and $B A$ are (m, n)-ideals of $S(m, n$ are positive integers).

Proof. Suppose that e.g. the condition $A B \subseteq A$ is fulfilled. Hence $(A B)(A B) \subseteq A \cdot A B \subseteq A B$,
i.e. $A B$ is a subsemigroup of S. On the other hand

$$
(A B)^{m} S(A B)^{n} \subseteq A^{m} S A^{n-1} \cdot(A B) \subseteq A B
$$

because of A is an (m, n)-ideal of S. Thus $A B$ is an (m, n)-ideal of S.
We prove that $B A$ is also (m, n)-ideal of S. Since

$$
(B A)(B A)=B(A B) A \subseteq B A \cdot A \subseteq B A
$$

$B A$ is a subsemigroup of S. From the condition $A B \subseteq A$ it follows, that

$$
(B A)^{m} S(B A)^{n} \subseteq B \cdot A^{m} S A^{n} \subseteq B A
$$

therefore $B A$ is also an (m, n)-ideal of S.
Analogously we can prove our theorem if the condition $B A \subseteq A$
is satisfied.
Corollary. Let A be an (m, n)-ideal of a semigroup S and let a be an element of A. Then the products $a A$ and $A a$ are (m, n)-ideals of S (m, n are positive integers).

This follows at once from Theorem 2.
Theorem 3. Let S be a semigroup, which satisfies the descending chain condition for its subsemigroups. If S has at least one proper (m, n)-ideal, where $m>1, n>1$, then S has either a proper $(1, k)$ ideal or a proper ($k, 1$)-ideal, too.

Proof. Let m_{1} be the smallest positive integer for which there exists proper (m_{1}, n)-ideal in S, and let n_{1} be the smallest positive integer such that there exists proper (m, n_{1})-ideal in S. We show that either $m_{1} \leqq n$ or $n_{1} \leqq m$ holds. If would be $m_{1}>n$ and $n_{1}>m$, then $m_{1} \leqq m$ implies $n<n_{1}$, which is impossible.

Suppose that $1<m_{1} \leqq n$ and A is a proper $\left(m_{1}, n\right)$-ideal of S. We define the following sequence of subsemigroups of S :
(4) $\quad B_{1}=A^{m_{1}} S A^{n} ; \quad B_{i+1}=B_{i}^{m_{1}} S B_{i}^{n}, \quad(i=1,2, \cdots)$.

It is easy to see, that

$$
\begin{equation*}
B_{i}^{m_{1}} S B_{i}^{n} \subseteq A \quad(i=1,2, \cdots) \tag{5}
\end{equation*}
$$

holds. From the descending chain condition for subsemigroups of S it follows, that there exists a positive integer j such that

$$
B_{j}=B_{j+1},
$$

that is

$$
B_{j}=B_{j}^{m_{1}} S B_{j}^{n} .
$$

We shall write B instead of B_{j}. Therefore

$$
\begin{equation*}
B=B^{m_{1}} S B^{n} \tag{6}
\end{equation*}
$$

This implies

$$
\begin{equation*}
B^{m_{1}} S B^{n-m_{1}} B^{m_{1}} S B^{n}=B S B^{n} \tag{7}
\end{equation*}
$$

and
(8)

$$
B^{m_{1}} S B^{n-m_{1}+1}=B S B^{n}
$$

From (6) and (8) we conclude that

$$
B^{m_{1}} S B^{n-m_{1}+1} \cdot B^{m_{1}-1}=B S B^{n} \cdot B^{m_{1}-1},
$$

that is

$$
B S B^{n+m_{1}-1}=B
$$

Thus the subsemigroup B is an ($1, n+m_{1}-1$)-ideal of S.
Analogously we can prove the existence of proper ($k, 1$)-ideal of S in case of $n_{1} \leqq m$.

References

[1] K. Iséki: On (m, n)-antiideals in semigroup, Proc. Japan Acad., 38, 316-317 (1962).
[2] S. Lajos: On generalized ideals in semigroups (In Hungarian), Matematikai Lapok, 10, 351 (1959).
[3] S. Lajos: On (m, n)-ideals of semigroups, Second Hungarian Math. Congress, vol. I, 42-44 (1960).
[4] -: On ideal theory for semigroups (in Hungarian), A Magyar Tud, Akad. Mat. és Fiz. Oszt. Közlemenyei, 11, 57-66 (1961).
[5] -: Generalised ideals in semigroups, Acta Sci. Math., 22, 217-222 (1961).
[6] -: On semigroup of subsets of a semigroup (in Russian), Publ. Math. Debrecen, 10, 223-226 (1963).

