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1. Introduction. Let A be a strongly elliptic operator defined
in a domain D of R, and let us consider the Dirichlet problem for
the operator A-I, be a complex number. Then we can define the
fractional power A under a suitable condition on the spectrum of A.
In the case where A is formally self-adjoint, T. Kotake and M. S.
Narasimhan 2 have recently proved that A-(Re >0) has a kernel
representation and moreover this kernel is very regular. In this
article, we want to obtain the same result for not always self-adjoint
operator. We consider the Dirichlet problem in the space L(D). We
express the weak solution u e L(D) of the equation Au-u--fe L(D)
by means of parametrix according to H. G. Garnir 1, and we also
express the Green kernel of A+I using the Green operator G.
Finally, we show that the kernel K of A is very regular. To
show this, we used some properties of parametrix which are due to S.
Mizohata 3. The detailed proof will be given in a forthcoming paper.

I thank here Prof. Mizohata, who encouraged me in this subject.

2. Expression of solutions. Let us consider the strongly elliptic
partial differential operator of order 2 m defined in a domain D
(bounded or unbounded) of R

(2.1) A--A , where

The coefficients a(x) belong to (D), where D is an open set such

that DD. The condition of ellipticity
(2.2) Re a(x)(iy) 7] Y], for all yeR’, 7: const. > 0,

is to be fulfilled uniformly in D. We denote by A’-A’ , the

transposed oerator of A. Because we only need the local expressions
(expressions in a fixed compact set contained in D)of weak solutions
and of Green kernels, without loss of generality we ean suose that
the eoeeients a() are defined in R and the uniform ellitieity (2.2)
holds in R as well.

At first, we assume the existenee of the arametrix N of A (rest.
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E’ of A’) having the following properties:
i) E (resp. E’) satisfies the equation

(2.3) A x,-x
(resp. A’(x, -) E’(x, $)--x_--L’(x,

where L(x, $)(resp. L’(x, $)) is a sufficiently smooth function of x in
R, depending on the parameter $ which runs through R.
ii) E(x, $)(resp. E’(x, $)) is semi-regular in x and $ at the same time
and is infinitely differentiable in (x,
moreover, E(x, ),(w) for any open set w(A--).

Let D be any bounded open set such that DD, and
1(2.4) D,--{xeD; dis. (x,D)<} where 0<3 (fixed)< dis. (3D, D).

Define
(2.5) (x)--a([x])e,l for [x</2,0 for [x >3.
(2.6) fl(x)fl,(x)e(D),l on a neighbourhood of D,.
(2.7) (x, $)--A(x,

By virtue of the hypothesis ii), (x, $)(resp. (x, $)) e x, (R R).
From now on, we denote the integral over R or D by the dual

form:

(f(x), f
L. If ()eL(D) be a weak solution of the equation A()

=f() L(D), the equality

holds as a distribution in D. In the same way, the equality

holds in D for a weak solution ()sL(D) of the transposed equation

Next, the set of the eomlex numbers 2 such that A+2I has its
Green oerator G attaehed to the Diriehlet roblem is an oen set.
If A satisfies the condition (2.2), there exists a real constant r such
that, if Re 2>r, G exists and its restriction on L(D) has the follow-
ing estimate of the operator norm
(2.9)
Moreover we impose the condition

(C) there exists no spectrum on the half-line 0.
In other words, there exists G on the positive real axis. Such an
assumption may be artificial, but it is essential for our definition of
the fractional power in 3.
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Using (2.8) and (2.8)’, we obtain the following
PROPOSITION 1. If the operator A has the Green operator G, G

has a kernel representation

(Gf)()-- x)f(x)dx
D

where
(2.10) K($, x)=a(x--$)E’(x, )+(a(--x)E(, x),fl@){(, $)+L’(], )}}

+ < G [({)[(, x) +L({, x)}, (]){(],
in ($,x)eD1xD1 (this is an extension of the formula obtained in 1,
p. 8).

Finally, let us apply the formula (2.10) to the operator A+2I
(of course, we assume the properties of parametrix):

Let us denote G- A x, +2I (Gf)($)- K(, x]2)f(x)dx,
then we have*)

(2.11) K($, x l2)-(x-$)E’(x,
+;(v-)E(, xl), (){;(, )+L’(,
+ ;a[Z(;){(;, xl)+L(;, xl )}, Z()[’(, )+L’(,

3. Fractional powers of A. Under the condition (C) on the
spectrum of A, we define the fractional power A by the integral

(3.1) A f(--a)-(A+aI)-da, for Re
2i

F

where the path F of integration consists of three parts: the positive
real axis (from o to p(0<p<<l)), the circle 121=P (from 2=p to
2=p in the negative sense) and the positive real axis (from p to o).
(--2) equals to its principal value on the negative real axis. By
the estimate (2.9), the integral (3.1) converges and defines a continuous
linear operator: L(D)->L(D).

PROPOSITION 2. For any given non-negative integers p and q,
we can construct a family of parametrix E(x, $12) (continuously de-
pending on (, 2)sRn F) of the operator A+ 2I having the following
properties:

(1) 2L(x, $12) remains bounded in ,(R Rn) when 2 tends
to

(2) 2E(x, 1) remains bounded (with respect to 2 s F) in ,(w)
where oo is an arbitrary open set such that -(3) 2E(x, 1) belongs to /-+ and remain bounded in
)Z/-+- with respect to (, 2)RF.

*) We denote L(x, 12), (x, 12), L’(x, 12) and O’s(x, {2) as follows:

{A(x, -x )+}E(x, )=--L(x, 12),

o(,,I,)= A , , [{1-ee(-)tE(, l’), etc.
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(4) Let k be any non-negative integer. Then the linear map-
--> defined by ()q(E(x, 1), ()} and theping: +’/++(q-

mapping: +:’/+:+(q-) defined by (x)2q(E(x, ), (X)} are
equi-continuous in . And these mappings continuously depend on

We construct E(x, $[2) as follows (c.f.S. Mizohata [3)"

(3.2) P $; () +1+.

(a.) ,’ N{a()-a(+e)l
( )- 1re(3.4) (]2)=P [; -- (2u) P($[;iy)

dy

(8.g) f(l 2)- P 2; , ; f-(12), i-1, 2,..., and

where r is the translation oerator by : re[()=p(--).
easy to show that (2), (8) and (o) are satisfied by this
whatever may be, and that (1) is satisfied if
++1.**

THEOREM. The operator A-"(Re a>0) has a kernel representation

(a.7) (A-"f)(e)-fg’")(e, x)f(x)dx, for f(x)eL"(D)
where the kernel

(.) g(e, ) (-)-"K(e,

D (,
differentiable in where f(x) is infinitely differentiable.

Remark: The mapping: 2+:[’/"+(D)(D) defined by
(3.9) (x)tg(")($, x), (x)}
and the mapping: defined by
(.0) v()(g(")($, ),
are continuous.

COROLLARY. For any complex number a (not necessarily Re a>0),
the integral (3.8) converges and it is an entire function of a out-
side of the diagonal A, moreover this kernel is very regular.

In the case where Re a g0, the mappings (3.9) and (3.10) define
+2+2qcontinuous linear mappings: 22+:/ (D)(D) and +’/+:+q’(D)

2(D) respectively, where q’- Re a +1.

**) We can similarly construct a family of parametrix E’(x, 1) satisfying this pro-
position.
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