129. A Note on the Logarithmic Means

By Kazuo Ishiguro
Department of Mathematics, Hokkaido University, Sapporo
(Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1963)

$\S 1$. When a sequence $\left\{s_{n}\right\}$ is given we define the logarithmic means by the transformation

$$
\begin{align*}
& t_{0}=s_{0}, \quad t_{1}=s_{1} \\
& t_{n}=\frac{1}{\log n}\left(s_{0}+\frac{s_{1}}{2}+\cdots+\frac{s_{n}}{n+1}\right) \quad(n \geq 2) \tag{1}
\end{align*}
$$

If $\left\{t_{n}\right\}$ tends to a finite limit s as $n \rightarrow \infty$, we shall denote that $\left\{s_{n}\right\}$ is summable (l) to s. (See [2] p. 59, p. 87.)

As is well known the Cesàro means $(C, 1)$ are defined by the transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{n+1}\left(s_{0}+s_{1}+\cdots+s_{n}\right) \quad(n \geq 0) . \tag{2}
\end{equation*}
$$

Concerning these methods of summability we know the following
Theorem 1. If $\left\{s_{n}\right\}$ is summable ($C, 1$) to s, then it is summable (l) to the same sum. There is a sequence summable (l) but not summable (C, 1). (See [2] p. 59, [7] p. 32.)

We shall prove, in this note, some converse of this theorem.
Theorem 2. If $\left\{s_{n}\right\}$ is summable (l), with

$$
\frac{1}{\log n}\left(s_{0}+\frac{s_{1}}{2}+\cdots+\frac{s_{n}}{n+1}\right)=s+o\left(\frac{1}{\log n}\right),
$$

then $\left\{s_{n}\right\}$ is also summable ($C, 1$). The condition $o\left(\frac{1}{\log n}\right)$ cannot be replaced by $O\left(\frac{1}{\log n}\right)$.

Proof. From (1) and (2) we get

$$
\begin{aligned}
& s_{0}=t_{0}, \quad s_{1}=t_{1}, \quad s_{2}=3\left(t_{2} \log 2-t_{0}-\frac{t_{1}}{2}\right) \\
& s_{n}=(n+1)\left\{t_{n} \log n-t_{n-1} \log (n-1)\right\} \quad(n \geq 3)
\end{aligned}
$$

and

$$
\begin{align*}
\sigma_{n}= & \frac{1}{n+1}\left(s_{0}+s_{1}+\cdots+s_{n}\right) \tag{3}\\
= & \frac{-1}{n+1}\left\{2 t_{0}+\frac{1}{2} t_{1}+t_{2} \log 2+t_{3} \log 3+\cdots+\right. \\
& \left.+t_{n-1} \log (n-1)\right\}+t_{n} \log n .
\end{align*}
$$

Since

$$
\lim _{n \rightarrow \infty} \frac{-1}{n+1}\left\{2+\frac{1}{2}+\log 2+\log 3+\cdots+\log (n-1)\right\}+\log n
$$

$$
=\lim _{n \rightarrow \infty} \log \frac{n}{n+1 \sqrt{n!}}=1
$$

we may suppose $s=0$ without loss of generality. Since $t_{n} \log n=o(1)$ by assumption, we can easily see, from (3), $\sigma_{n}=o$ (1).

To prove the second part of this theorem we put

$$
t_{0}=t_{1}=0, \quad t_{n}=\frac{(-1)^{n}}{\log n} \quad(n \geq 2)
$$

or

$$
\begin{aligned}
& s_{0}=s_{1}=0, \quad s_{2}=3, \\
& s_{n}=2(-1)^{n}(n+1) \quad(n \geq 3) .
\end{aligned}
$$

For this sequence we see

$$
\lim _{n \rightarrow \infty} t_{n}=0 \text { and } t_{n}=O\left(\frac{1}{\log n}\right)
$$

but the sequence $\left\{\sigma_{n}\right\}$ cannot lead to a limit, whence the proof is complete.

The first part of Theorem 2 may be easily generalized as follows:
Corollary. If $\left\{s_{n}\right\}$ is summable (l), with

$$
\lim _{n \rightarrow \infty}\left\{\frac{1}{\log n}\left(s_{0}+\frac{s_{1}}{2}+\cdots+\frac{s_{n}}{n+1}\right)-s\right\} \log n=\alpha
$$

where α is a finite value, then $\left\{s_{n}\right\}$ is also summable ($C, 1$).
We can prove it from (3) quite similarly as in the case of Theorem 2.
§2. In previous papers the author established some theorems on the summability methods (l) and (L). Here the method (L) is defined by the sequence-to-function transformation

$$
\frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1}
$$

for $x \rightarrow 1-0$. (See [1], [3] p. 81.)
The author proved the following theorems. (See [4,5].)
Theorem 3. If $\left\{s_{n}\right\}$ is summable (l) to s, then it is summable (L) to the same sum. There is a sequence summable (L) but not summable (l).

Theorem 4. If $\left\{s_{n}\right\}$ is summable (L) to s, and if further $s_{n} \geq-M$, then it is summable (l) to the same sum.

These two theorems ensure the equivalence of the methods (l) and (L), provided that $s_{n} \geq-M$.

On the other hand we know the following celebrated theorems.
Theorem 5. If $\left\{s_{n}\right\}$ is summable $(C, 1)$ to s, then it is Abel summable to the same sum. There is a sequence Abel summable but not summable ($C, 1$). (See [2] p. 108.)

Theorem 6. If $\left\{s_{n}\right\}$ is Abel summable to s, and if further $s_{n} \geq-M$, then it is summable $(C, 1)$ to the same sum. (See [2] pp. 154 et seq., $[3,6]$.)

These two theorems also ensure the equivalence of the methods $(C, 1)$ and Abel, provided that $s_{n} \geq-M$.

Hardy and Littlewood [3] point out that the assumption

$$
f(x)=\sum_{n=0}^{\infty} p_{n} x^{n} \sim \log \left(\frac{1}{1-x}\right), \quad p_{n} \geq 0
$$

cannot involve

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n p_{n} x^{n-1} \sim \frac{1}{1-x} .
$$

To prove it they use the power series

$$
f(x)=\sum_{n=0}^{\infty} x^{a^{n}},
$$

where a is an integer greater than or equal to 2 . Then we get

$$
f(x) \sim \frac{1}{\log a} \log \left(\frac{1}{1-x}\right),
$$

but $(1-x) f^{\prime}(x)$ cannot lead to a limit as $x \rightarrow 1-0$.
If we put, in the above example, $p_{0}=0$ and $p_{n}=\frac{s_{n-1}}{n}$ for $n \geq 1$, then we get the following

Theorem 7. There is a sequence $\left\{s_{n}\right\}, s_{n} \geq-M$, summable (L) but not Abel summable.

On the other hand we know the following
Theorem 8. If $\left\{s_{n}\right\}$ is Abel summable to s, then it is summable (L) to the same sum. (See [1], [3] p. 81.)

On account of Theorem 1, 3, 4, 5, 6, 7, and 8 we can deduce further the following

Theorem 9. There is a sequence $\left\{s_{n}\right\}, s_{n} \geq-M$, summable (l) but not summable ($C, 1$).

In fact if Theorem 9 would not hold, then Theorem 7 would not hold also. Of course, we can directly prove Theorem 9 by using the sequence

$$
\begin{aligned}
& s_{a^{n}-1}=a^{n} \text { for } n=0,1,2, \cdots, a \geq 2, \\
& s_{k}=0 \text { for other } k .
\end{aligned}
$$

But the proof is a repeat of that of Theorem 7.

References

[1] D. Borwein: A logarithmic method of summability, Jour. London Math. Soc., 33, 212-220 (1958).
[2] G. H. Hardy: Divergent Series, Oxford (1949).
[3] G. H. Hardy and J. E. Littlewood: Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive, Proc. London Math. Soc., (2) 13, 174-191 (1914).
[4] K. Ishiguro: On the summability methods of logarithmic type, Proc. Japan Acad., 38, 703-705 (1962).
[5] -: A converse theorem on the summability methods, Ibid., 39, 38-41 (1963).
[6] J. Karamata: Neuer Beweis und Verallgemeinerung der Tauberschen Sätze, welche die Laplacesche und Stieltjessche Transformation betreffen, Jour. Reine Angew. Math., 164, 27-39 (1931).
[7] O. Szász: Introduction to the Theory of Divergent Series, Cincinnati (1952).

