147. On the Point Spectrum of the Schrödinger Operator

By Sigeru Mizohata and Kiyoshi Mochizuki

(Comm. by Kinjirô KunugI, m.J.A., Nov. 12, 1963)

1. Introduction. Let us consider the Schrödinger operator defined in R^{3}

$$
\begin{align*}
L= & \sum_{j=1}^{3}\left(\frac{1}{i} \frac{\partial}{\partial x_{j}}-b_{j}(x)\right)^{2}+q(x) \tag{1.1}\\
& \equiv-\Delta+2 i \sum b_{j} \frac{\partial}{\partial x_{j}}+i \sum \frac{\partial b_{j}}{\partial x_{j}}+c(x)
\end{align*}
$$

where $b_{j}(x)$ and $q(x)$ are real-valued. Our purpose is to show that, under certain conditions on b_{j} and q, the point spectrum of the operator L is finite.

Let us assume ${ }^{1)}$
(C_{1})

$$
b_{j}(x) \in \mathscr{B}^{1}\left(R^{3}\right), \quad c(x) \in \mathcal{E}^{0}(\text { Co }), \quad|c(x)| \leq \frac{\text { const }}{|x|^{1.5-6}}+\text { const }, \quad \varepsilon>0
$$

Under this assumption, it is easy to see
Lemma 1.1. The operator L has a unique self-adjoint extension A, and $\mathscr{D}(A)=\mathscr{D}_{L^{2}}^{2}$, moreover we have

$$
\begin{equation*}
\|u(x)\|_{\mathscr{D}_{2}^{2}} \leq C(\Lambda)\|u\|_{L^{2}} \tag{1.2}
\end{equation*}
$$

for any eigenfunction $(\lambda-A) u=0$ for $\lambda \leq \Lambda, \Lambda$ being arbitrary positive number.

In section 2, we require more stringent condition:

$$
\begin{gather*}
b_{j}(x) \in \mathcal{E}^{2}\left(R^{3}\right) ; \quad b_{j}(x), \quad|x| \frac{\partial b_{j}}{\partial x_{i}}(x) \quad \text { are bounded } ; c(x) \in \mathcal{E}^{1}(\boldsymbol{C o}) ; \tag{2}\\
|x| \cdot\left|\frac{\partial c}{\partial x_{i}}(x)\right| \leq \frac{\text { const }}{|x|^{1.5-\epsilon}}+\text { const, } \quad \varepsilon>0 .
\end{gather*}
$$

Then, under the assumptions (C_{1}) and (C_{2}), we have
Lemma 1.2. Let $u(x) \in \mathscr{D}_{L^{2}}^{2}$ be a solution of $A u=\lambda u, \lambda$ real. We have $u(x) \in \mathcal{E}_{L^{3^{2}(100)}}($ Co $)$. Moreover, in a neighbourhood of the origin, we have

$$
|u(x)| \leq \mathrm{const}, \quad\left|u_{x_{i}}(x)\right| \leq \frac{\text { const }}{|x|^{0.5-6}}, \quad\left|u_{x_{i} x_{j}}(x)\right| \leq \frac{\text { const }}{|x|^{2}} .
$$

2. Upper boundedness of the eigenvalues.

Theorem 1. Under the assumptions $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{2}\right)$, there exists a $\lambda_{0}>0$

[^0]such that, for $\lambda \in\left[\lambda_{0}, \infty\right)$ there exists no eigenvalue of A.
Proof. We follow the Wienholtz work ([3]). Let us assume, for the moment, $u(x) \in \mathcal{E}^{3}(C o)$. Let us start from the identity:
\[

$$
\begin{aligned}
& (*) \quad(n+2)\{(-\Delta u) \bar{u}+(-\Delta \bar{u}) u\}=-n \sum_{i}\left(\frac{\partial}{\partial x_{i}}|u|^{2}\right)_{x_{i}}+2 \sum_{i, k}\left(x_{i}\left|u_{x_{k}}\right|^{2}\right)_{x_{i}} \\
& \quad-2 \sum_{i, k}\left(x_{i} u_{x_{i} x_{k}} \bar{u}+x_{i} \bar{u}_{x_{i} x_{k}} u\right)_{x_{k}}+2|x|\left\{u \frac{\partial}{\partial|x|} \Delta \bar{u}+\bar{u} \frac{\partial}{\partial|x|} \Delta u\right\} \text { in } R^{n} .
\end{aligned}
$$
\]

Let $u(x) \in \mathscr{D}_{L^{2}}^{2}$ be a solution of $A u=\lambda u$. Taking into account of (1.1),

$$
\begin{aligned}
& 2|x|\left\{u \frac{\partial}{\partial|x|} \Delta \bar{u}+\bar{u} \frac{\partial}{\partial|x|} \Delta u\right\}=2 n(\lambda-c(x))|u|^{2}+I+J-4 i K,,^{2)} \text { where } \\
& \quad I=2 i|x|\left\{\sum_{j} \frac{\partial b_{j}}{\partial x_{j}}\left(\bar{u} \frac{\partial}{\partial|x|} u-u \frac{\partial}{\partial|x|} \bar{u}\right)\right\}, \\
& J=2|x| \frac{\partial}{\partial|x|} c(x) \cdot|u|^{2}+2 \sum_{i}\{(c(x)-\lambda) u \bar{u}\}_{x_{i}} \\
& K=\sum_{i, j}\left(x_{i} b_{j} u \bar{u}_{x_{j}}\right)_{x_{i}}-\left(x_{i} b_{j} \bar{u} u_{x_{i}}\right)_{x_{j}}+\sum_{i, j} x_{i} \frac{\partial b_{j}}{\partial x_{i}}\left(u \bar{u}_{x_{j}}-\bar{u} u_{x_{i}}\right) \\
& \quad+\sum_{i, j} \frac{\partial}{\partial x_{j}}\left(x_{i} b_{j}\right) u_{x_{j}} \bar{u}-\sum_{i, j} \frac{\partial}{\partial x_{i}}\left(x_{i} b_{j}\right) u \bar{u}_{x_{j}} .
\end{aligned}
$$

Now, taking into account of (1.1),

$$
\begin{aligned}
& \int_{\bullet \leq|x| \leq r}(n+2)\{(-\Delta u) \bar{u}+(-\Delta \bar{u}) u\}-2 n(\lambda-c(x))|u|^{2} d x \\
& \quad \geq 2 \int(\lambda-c(x))|u|^{2} d x+2 \int|\operatorname{grad} u|^{2} d x-\mathrm{const} \int|u||\operatorname{grad} u| d x \\
& \quad-\operatorname{const}\left(\int_{|x|=r}|u||\operatorname{grad} u| d S+\int_{|x|=\varepsilon}|u||\operatorname{grad} u| d S\right)
\end{aligned}
$$

where const means a constant independent of $u(x), r$ and λ. This convention will be made hereafter. The integration is taken over $\{x ; \varepsilon \leq|x| \leq r\}$. Next, we integrate (the second member of (*)) $-2 n(\lambda-c(x))|u|^{2}$ on the domain $\varepsilon \leq|x| \leq r$. Taking into account of Lemma 1.2, this integral is estimated by the following form:

$$
\begin{aligned}
& \text { const }(1+r+\lambda r) \int_{|x|=r}|u|^{2}+|\operatorname{grad} u|^{2}+\sum_{i, j}\left|u_{x_{i} x_{j}}\right|^{2} d S \\
& \quad+\text { const } \int_{|x| \leq r}|u||\operatorname{grad} u| d x+\underset{|x| \leq r}{2}|x|\left|\frac{\partial}{\partial|x|} c(x)\right||u|^{2} d x .
\end{aligned}
$$

Therefore we have the inequality
(2.2) $2 \int_{|x| \leq r}(\lambda-c(x))|u|^{2} d x+2 \int_{|x| \leq r}|\operatorname{grad} u|^{2} d x-\mathrm{const} \int_{|x| \leq r}|u||\operatorname{grad} u| d x-$
2) $\quad I=2|x|\left\{u \frac{\partial}{\partial|x|}\left(-i \sum \frac{\partial b_{j}}{\partial x_{j}} \bar{u}\right)+\bar{u} \frac{\partial}{\partial|x|}\left(i \sum \frac{\partial b_{j}}{\partial x_{j}} u\right)\right\}$,
$J=2|x|\left\{u \frac{\partial}{\partial|x|}(c(x)-\lambda) \bar{u}+\bar{u} \frac{\partial}{\partial|x|}(c(x)-\lambda) u\right\}-2 n(\lambda-c(x))|u|^{2}$,
$K=u|x| \sum \frac{\partial}{\partial|x|}\left(b_{j} \bar{u}_{x_{j}}\right)-\bar{u}|x| \sum \frac{\partial}{\partial|x|}\left(b_{j} u_{x_{j}}\right)$.

$$
\begin{aligned}
& -2 \int_{|x| \leq r}|x|\left|\frac{\partial}{\partial|x|} c(x)\right||u|^{2} d x \\
& \quad \leq \text { const }(1+r+\lambda r) \int_{|x|=r}|u|^{2}+|\operatorname{grad} u|^{2}+\sum\left|u_{x_{i} x_{j}}\right|^{2} d S .
\end{aligned}
$$

Up to now, we assumed $u(x) \in \mathcal{E}^{3}(\boldsymbol{C o})$. We can remove this assumption. Take a mollifier $\varphi_{\delta}(x)$, and consider $u_{\delta}=\varphi_{\delta} * u(x)$. $\quad u_{\delta}$ satisfies

$$
\begin{equation*}
A u_{\delta}+C_{\delta} u=\lambda u_{\delta}, \text { where } C_{\delta}=\left[\varphi_{\dot{\delta}} *, B\right], B=2 i \sum b_{j} \frac{\partial}{\partial x_{j}}+i \sum \frac{\partial b_{i}}{\partial x_{j}}+c(x) . \tag{2.3}
\end{equation*}
$$

 know $\int_{\bullet \leq|x| \leq r}\left|\frac{\partial}{\partial|x|} C_{\delta} u\right|^{2} d x \rightarrow 0$, as $\delta \rightarrow 0$. This shows that, by the passage to the limit, the above reasoning is also true.

Finally we have, taking into account of the condition $\left(\mathrm{C}_{1}\right)$,

$$
\begin{equation*}
\int_{|x| \leq r}|x|\left|\frac{\partial}{\partial|x|} c(x)\right||u|^{2} d x \leq c_{0} \sqrt{\delta} \int_{|x| \leq r}|\operatorname{grad} u|^{2} d x+c(\delta) \int_{|x| \leq r}|u|^{2} d x,^{3)} \tag{2.4}
\end{equation*}
$$

where δ can be taken arbitrarily small.
Finally, taking into account of $\left(\mathrm{C}_{1}\right)$ and of (**) of the footnote 3), if we choose $\lambda_{0}>0$ sufficiently large,

$$
\begin{equation*}
2\left(\lambda-\lambda_{0}\right) \int_{|x| \leq r}|u|^{2} d x \leq \operatorname{const}(1+r+\lambda r) \int_{|x|=r}|u|^{2}+|\operatorname{grad} u|^{2}+\sum\left|u_{x_{i} x_{j}}\right|^{2} d S . \tag{2.5}
\end{equation*}
$$

Dividing both sides by r, and integrating in r from $a(>0)$ to R, we have

$$
2\left(\lambda-\lambda_{0}\right) \int_{|x| \leq a}|u|^{2} d x \cdot \log \frac{R}{a} \leq \operatorname{const} \int_{a \leqq|x| \leq R}|u|^{2}+|\operatorname{grad} u|^{2}+\sum\left|u_{x_{i} x_{j}}\right|^{2} d x .
$$

Since $u(x) \in \mathscr{D}_{L^{2}}^{2}$, the right hand side tends to a finite limit when $R \rightarrow+\infty$, hence $u(x) \equiv 0$ for $|x| \leq a$. Since a is arbitrary, we have $u(x) \equiv 0$.
3. Finiteness of positive eigenvalues. We impose the following conditions on the behavior of b_{j} and c at infinity.
$\left(\mathrm{C}_{3}\right) \quad b_{j}(x)=b_{j}^{0}+\bar{b}_{j}(x), b_{j}^{0}$ being real; $\bar{b}_{j}(x), \frac{\partial \bar{b}_{j}}{\partial x_{i}}(x), q(x)=O\left(\frac{1}{|x|^{2+\varepsilon}}\right), \varepsilon>\frac{1}{2}$, as $|x| \rightarrow+\infty$.

We want to prove
Theorem 2. Under the assumptions $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{3}\right)$, for any $\Lambda>0$, there exists at most a finite number of eigenvalues of the operator A in $[0,1]$. Here the number is counted with multiplicity.
3) In fact

$$
\begin{gathered}
\text { (**) } \int_{|x| \leq r} \frac{|u(x)|^{2}}{|x|^{1.5-\delta}} d x=\int_{|x| \leq \delta} \cdots+\int_{\delta \leq|x| \leq r} \cdots \leq \sqrt{\delta} \int_{|x| \leq \delta} \frac{|u(x)|^{2}}{|x|^{2}} d x+\frac{1}{\delta^{1.5-\delta}} \int_{|x| \leq r}|u(x)|^{2} d x \\
\leq 4 \sqrt{ } \bar{\delta} \int_{|x| \leq r}|\operatorname{grad} u|^{2} d x+c(\delta) \int_{|x| \leq r}|u(x)|^{2} d x .
\end{gathered}
$$

Since

$$
e^{-i\left(b_{j}^{0} x\right)} \sum_{j}\left(\frac{1}{i} \frac{\partial}{\partial x_{j}}-b_{j}(x)\right)^{2} u=\sum_{j}\left(\frac{1}{i} \frac{\partial}{\partial x_{j}}-\bar{b}_{j}(x)\right)^{2}\left(e^{-i\left(b_{j}^{0} x\right)} u\right),
$$

in order to prove Theorem 2, it is enough to assume that $b_{j}(x)$ themselves satisfy $\left(\mathrm{C}_{3}\right)$, therefore $c(x)=\sum b_{j}^{2}(x)+q(x)$ satisfies the same condition as $q(x)$ in (C_{3}). So we assume

$$
\begin{equation*}
b_{j}, \quad \frac{\partial b_{j}}{\partial x_{i}}, \quad c(x)=O\left(\frac{1}{|x|^{2+\varepsilon}}\right), \quad \varepsilon>\frac{1}{2} . \tag{4}
\end{equation*}
$$

It is easy to see that, if $u(x) \in \mathscr{D}(A)=\mathscr{D}_{L^{2}}^{2}$ satisfies $A u=\lambda^{2} u, \lambda \geq 0$, we have

$$
\begin{equation*}
u(x)=-\frac{1}{4 \pi} \int \frac{e^{i \lambda|x-y|}}{|x-y|}\left\{2 i \sum b_{j}(y) \frac{\partial}{\partial y_{j}}+i \sum \frac{\partial b_{j}}{\partial y_{j}}(y)+c(y)\right\} u(y) d y \tag{3.1}
\end{equation*}
$$

Now we prove the following lemma due essentially to Povzner ([2]):

Lemma 3.1. Let us consider the function

$$
\begin{equation*}
\psi(x)=\int \frac{e^{i \lambda|x-y|}}{|x-y|} a(y) u(y) d y, u(x) \in L^{2}, \tag{3.2}
\end{equation*}
$$

$a(x)$ being bounded, and when $|x| \rightarrow+\infty, a(x)=O\left(\frac{1}{|x|^{2+\varepsilon}}\right), \varepsilon>\frac{1}{2}$.
Then Then
(3.3) $\psi(x)=\frac{e^{i \lambda|x|}}{|x|} \int e^{-i \lambda(\tilde{x}, y)} a(y) u(y) d y+\psi_{1}(x) \equiv \psi_{0}(x)+\psi_{1}(x)$, where $\tilde{x}=\frac{x}{|x|}$, moreover
(3.4) $\left|\psi_{1}(x)\right| \leq \frac{\text { const }}{(1+|x|)^{1.5+\delta}}\|u\|_{L^{2}}$, where $\delta=\frac{\varepsilon}{2}-\frac{1}{4}$, const is independent of λ. In particular, if $\psi(x) \in L^{2}$, then $\psi_{0}(x) \equiv 0$.

Proof. Let us write

$$
\begin{align*}
& \psi(x)=\int_{|y| \leq \rho} \frac{e^{i \lambda|x-y|}}{|x-y|} a(y) u(y) d y+\int_{|y| \geq \rho} \cdots d y . \\
& \mid \text { second term }\left|\leq \int_{|y| \geq \rho} \frac{|a(y)|}{|x-y|}\right| u(y) \left\lvert\, d y \leq c \int_{|y| \geq \rho} \frac{|u(y)|}{|x-y| \cdot|y|^{2+\epsilon}} d y\right. \\
& \leq c\|u\|\left(\int_{|y| \geq \rho} \frac{d y}{|x-y|^{2}|y|^{4+2 \epsilon}}\right)^{\frac{1}{2}} \leq c^{\prime}| | u \|^{\frac{1}{|x| \cdot \rho^{\frac{1}{2}+\epsilon}}} . \\
& \text { Put } \quad \rho=|x|^{\frac{1}{2}},
\end{align*}
$$

we have

$$
\mid \text { second term } \left\lvert\, \leq \frac{1}{|x|^{1.5+\left(\frac{\varepsilon}{2}-\frac{1}{4}\right)}} c^{\prime}\|u\|\right.
$$

Concerning the first term,

$$
\frac{e^{i \lambda|x-y|}}{|x-y|}=\frac{e^{i \lambda|x|}}{|x|} e^{-i \lambda(\tilde{x}, y)} e^{i \lambda|x| 0(\tau 2)}(1+O(\tau))
$$

4) In fact

$$
\int_{|y| \geq \rho} \frac{d y}{|x-y|^{2}|y|^{3+h}} \leq \frac{\text { const }}{|x|^{2} \rho^{h}}, h>0 . \quad \text { See [1], p. } 20 .
$$

$$
=\frac{e^{i \lambda|x|}}{|x|} e^{-i \lambda(\tilde{x}, y)}\left(1+|x| O\left(\tau^{2}\right)\right)(1+O(\tau)), \text { where } \tau=\frac{|y|}{|x|}
$$

Put $\quad g(x)=\frac{e^{i \lambda|x|}}{|x|} \int_{|y| \leq \rho} e^{-i \lambda(\tilde{x}, y)}|x| O\left(\tau^{2}\right) \alpha(y) u(y) d y$
we have

$$
|g(x)| \leq \frac{\text { const }}{|x|^{2}} \int_{|y| \leq \rho} \frac{|y|^{2}}{(1+|y|)^{2+\sigma}}|u(y)| d y \leq \frac{\text { const }}{|x|^{2}} \rho^{\frac{3}{2}-\sigma}\|u\| \leq \frac{\text { const }}{|x|^{1.5+\left(\frac{9}{2}-\frac{1}{4}\right)}}\|u\| .
$$

Concerning the other terms, we have easier estimates. Finally

$$
\left|\frac{e^{i \lambda|x|}}{|x|} \int_{|y| \geq \rho} e^{-i \lambda(\tilde{x}, y)} a(y) u(y) d y\right| \leq \frac{\text { const }}{|x| \cdot \rho^{\frac{1}{2}+\varepsilon}}\|u\|=\frac{\text { const }}{|x|^{1.5+\left(\frac{\dot{1}}{2}-\frac{1}{4}\right)}}\|u\| .
$$

Remark. We can apply this lemma to the integrands in (3.1). Concerning the term $c(y) u(y)$, since $c(x)$ is not bounded, we take the following precaution:

$$
\int_{|y| \leq 1}|c(y) u(y)|^{2} d y \leq c\|u\|_{\mathscr{D}_{12}^{2}} \leq c C(A)\|u\|_{L^{2}} \quad \text { Lemma 1.1). }
$$

Finally we see that the lemma is also true for $\lambda=0$.
Lemma 3.2. (Equi-continuity). The eigenfunctions $u(x) \in \mathscr{D}_{L^{2}}^{2}$ corresponding to $\lambda \in[0,1]$ are uniformly bounded and equicontinuous, provided that $\|u\|_{L^{2}}=1$.

Proof. Uniform boundedness is an immediate consequence of Lemma 1.1. To show the equi-continuity, it is enough to remark that

$$
\varphi(x)=\int_{|y| \leq R} \frac{e^{i \lambda|x-y|}}{|x-y|} v(y) d y, \quad \lambda \in[0, \Lambda],
$$

satisfies

$$
\left|\varphi(x)-\varphi\left(x^{\prime}\right)\right| \leq C_{R}\left|x-x^{\prime}\right|^{\frac{1}{2}}\|v\|_{L^{2}}
$$

and also the above remark.
Lemmas 3.1 and 3.2 show that the set of all eigenfunctions $u(x) \in \mathscr{D}_{L^{2}}^{2}$ corresponding to $\lambda \in[0, \Lambda],\|u(x)\|_{L^{2}}=1$ forms a compact set in L^{2}. This proves Theorem 2.

Final remark. If we apply a recent work of Birman to (1.1), we can affirm the finiteness of the negative discrete spectrum. Namely, let us assume

$$
\begin{equation*}
q(x), \quad b^{2}(x) \equiv \sum_{j} \bar{b}_{j}(x)^{2}=O\left(\frac{1}{|x|^{2+\varepsilon}}\right), \quad \varepsilon>0, \quad \text { for } \quad|x| \rightarrow+\infty, \tag{5}
\end{equation*}
$$

where $b_{j}(x)=b_{j}^{n}+\bar{b}_{j}(x), b_{j}^{0}$ are real constants, then under the assumptions $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{5}\right)$, the negative eigenvalues are finite. Let us remark, above all, that as in Theorem 2, we can assume instead of $\bar{b}_{j}(x), b_{j}(x)$ themselves satisfy (C_{5}). Following the notation of [4], let us write (1.1) under the form

$$
C=\left\{\sum_{j}\left(\frac{1}{i} \frac{\partial}{\partial x_{j}}-b_{j}(x)\right)^{2}+b^{2}(x)+q^{+}(x)\right\}-\left\{b^{2}(x)+q^{-}(x)\right\} \equiv A-B,
$$

$D(A)=D(B)=\mathscr{D}\left(R^{3}\right)$. Now, let H_{A} be the completion of $D(A)$ by the
metric $(A u, u)^{\frac{1}{2}}$. It is easy to see that H_{A} is the same as the completion of $D(A)$ by the metric $\|\operatorname{grad} u\|_{L^{2}}$. Since the form $B[u, u]$ is completely continuous in H_{A}, we can apply Theorem 1.3 of [4].

References

[1] D. M. Eǐdus: On the principle of limiting absorption (in Russian), Mat. Sbornik, 57, 13-44 (1962).
[2] A. Y. Povzner: On the expansion of arbitrary functions in characteristic functions of the operator $-\Delta u+c u$, Mat. Sbornik, 32, 109-156 (1953).
[3] E. Wienholtz: Halbbeschränkte partielle Differentialoperatoren zweiter Ordnung von elliptischen Typus, Math. Ann., 135, 50-80 (1958).
[4] M. S. Birman: On the spectrum of singular boundary problems, Mat. Sbornik, 55, 126-174 (1961).

[^0]: 1) In this note, we used the notations of L. Schwartz in his treatise (Théorie des Distributions). Let us explain these briefly: $f(x) \in \mathscr{B}^{m}$, if $f(x)$ has continuous bounded derivatives up to order m. $f(x) \in \mathcal{E}^{m}(\Omega)$, if f is merely continuously differentiable in Ω up to order m. $\mathscr{D}_{L^{2}}^{m}$ is the space of all functions such that $D^{\nu} f \in L^{2}\left(R^{n}\right),|\nu| \leq m$, $\|f\|_{\mathscr{D}_{L, 2}^{m}}^{2}=\sum_{|\nu| \leq m}\left\|D^{\nu} f\right\|_{L^{2}}^{2} . \quad \mathcal{E}_{L^{2}}^{m}(\Omega)$ is the space of all functions such that $D^{\nu} f(x) \in L^{2}(\Omega)$, $|\nu| \leq m$, with the norm: $\left(\sum_{|\nu| \leq m}\left\|D^{\nu} f\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}} . f \in \mathcal{E}_{L^{2}(10 c)}^{m}(\Omega)$, if $\alpha f \in \mathcal{E}_{L^{2}}^{m}(\Omega)$, for all $\alpha(x) \in \mathscr{D}(\Omega)$.
