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144. A Note on the Functional.Representations
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By Sakuji INOUE
Faculty of Education, Kumamoto University

(Comm. by Kinjir6 KUNUGI, M.J.A., :Nov. 12, 1963)

Let (C) be the complex abstract Hilbert space which is complete,
andseparable, and infinite dimensional; let both {}__,.,,...

be incomplete orthonormal infinite sets which are orthogonal to each
other and by which a complete orthonormal system in 22 is construct-
ed; let {R}_-I,.,,... be an arbitrarily prescribed bounded sequence of
complex numbers; let (uij) be an infinite unitary matrix with

1, j--l, 2, 3,...; let ,--u,@; let N be the operator defined by

Nx- ,(x, )+c(x,
=I

or every x(C) and an arbitrarily given complex constant c; let L
be the continuous linear functional associated with an arbitrary ele-
ment y e(C); and let the operator N defined above be denoted symbol-
ically by

N=

_,(R)L+c , (R) L,
u=l

Then Nx is expressible in the form

Nx-- . (R) L(x)+c,. (R) L.(x) (x (C)).
=i

In Proceedings of the Japan Academy, Vol. 37, 614-618 (1961),
I defined "the functional-representation of N" by 2(R)L

=I /=i

(R)L and proved that the functional-representation of N converges
uniformly, that N is a bounded normal operator with point spectrum
{2}, and that IINII--max(suplfl, ]cl). In the same Proceedings, Vol.

38, 18-22 (1962), conversely I treated of the question as to whether
any bounded normal operator with point spectrum in gj can always
be expressed in the form of the above-mentioned infinite series of the
continuous linear functionals associated with all the elements of a
complete orthonormal system in g, by using such a unitary matrix
as above. Though, in the latter paper, the conclusion was affirmative,
an additional hypothesis, that is, "If the whole subset with non-zero
measure of the continuous spectrum of N lies on a circumference
with center at the origin" had to be set up: for otherwise, in the
particular case where N has no eigenvalue, N is not necessarily ex-
pressed by the linear combination of L, in connection with the unitary
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matrix (u.), as Mr. D. A. Edwards pointed out in Mathematical Reviews,
Vol. 26, No. 2 (1963).

In the present paper we shall show that the above-mentioned
functional-representation replacecl by a bounded Hermite matrix (a)
instead of the unitary matrix (u) also expresses a bounded normal
operator with point spectrum {} in

and {}:,,, both be incompleteTheorem A. Let {,}:,2,,.
orthonormal infinite sets which are orthogonal to each other and by
which a complete orthonormal system in is constructed; let

{2}:,2,,... be an arbitrarily prescribed boundefl sequence of complex
numbers; let (a) be an infinite Hermite matrix with --. and

[22 such that the operator A associated with () is a

bounded operator in Hilbert coordinate space l; let ,--a,; let
j=l

L be the continuous linear functional associated with xe, that is,
let L(y)--(y, x) for every ye; and let N be the operator defined by

N=L+cL,,
=1 g=l

where c is an arbitrarily given complex constant. Then this func-
tional-representation of N converges uniformly and N is a bounded
normal operator with point spectrum [}=.z....., the norm of which
is given by max(sup[L[, [c[.[[A).

Proof. Since, by hypotheses, a complete orthonormal system in
is constructed by the two incomplete orthonormal sets {} and

{,}, every element xe is expressed in the form

x-- a+
v=l =1

where a--L(x) and b,--L,(x), and

Since, in addition, [- [al< , j=l, 2, 3,..., by virtue of

the hypothesis concerning A, there is no difficulty in showing that

llNx12--]]2L(x)+c,L,(x)] (x.z)

=I =i =I
and that

IlAf[[- -, ba[ (f(b, b, b,. .)l)
k=l =i

Accordingly

where M=max(sup]l, [c[ .[[All). Moreover, if is an element be-

longing to the subspaee determined by , IINxll-I1 IIll; and if, on
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the contrary, x is in the subspace determined by {k},
]lgxll c]]]Acll<= ]vII]All ]]11-- ]vII]All

where -(L,(x), L.(x), L,(x),...)el2. In consequence, N is a bounded
operator with norm M in (C).

If we now denote by fp the element derived from the above-

mentioned element f- (bl, b2, bs,. e l. by putting bl b2 b3--" bp_

--0, then similarly it is verified without difficulty that, for any

x-a---b(C) where a--L(x) and b--L(x),
=1 p=l

[] E29 (R) L(x)+cEY. (R) L,(x)] 2- E 12 Ila, I+ c x

= =
he ositive integer P here can be so chosen as to satisfy the

inequality

for an arbitrarily given positive number e and any non-null element
x23. Hence we have

for such a P. Thus the functional-representation of N converges
uniformly.

Next we shall show that the operator N is normal. Since the

identity operator I is given by I= , (R)L+ , L,, it is found
=I =i

by direct computation that

(Nx, y)--(E9 L(x)+ c a3 Lo,(x), L(y)
=I =i =I =I

=I

=I =I =I

Puttin jand N=I9@L+L, similar-
=i =I =I

ly we can show that the functional-representation of Nis uniformly

converKent, that N is a bounded operator in , and that

(x, y)-= ,2L(x)L,(y)+c a,Lv,,(x)L.(y) (x,
=I =I

We have therefore (Nx, y)--(x, Ny), which implies that N is the
adjoint operator N* of N. In addition, it is a matter of simple
manipulations to show that
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NN*x--N].(R)L(x)+-.*. (R)L,(x)J (xe(C))
=i =I

and that

*N--N*[L()+cL()] ()

[ L()+c] [L,()]r.
Since, on the other hand, -- for ,--1,2,3,... by the

hypothesis on the matrix (), and hence since --K, the just
established results permit us to conclude that NN*--N*N in
Consequently N is a normal operator in b.

Thus it remains only to prove that the set {2} is the point
spectrum oZ N. However it s obvious that any 2 is an eigenvalue
of N aorresponding to the eigenelement ; and moreover, since

[#[, N has not any eigenvalue other than , ,-- I, 2, 3,...,

as can be seen from the reasoning used in one of the preceding papers
[cf. Proc. Japan Acad., Vol. 37, 614-618 (1961)]. Consequently the
point spectrum o N is iven by {2} itselL

Remark A. Though this theorem holds also in the case where
{} is a finite set, we ae interested in the case where {}
infinite set. Because, by applying the bounded normal operator

defined by n arbitrarily given unctional-representation

+cKL where K denotes such an element u. or
=i =i =i

as was described before, we can treat of various problems on complex-
vlued unctions which cannot be discussed rom point o view o
the classical function theory.

Remark B. Let N be the bounded normal operator defined by
such unctionl-representtion us ws stated in Remark A; let
be the set of all those accumulation points of {2} which do not belong
to [2} itself; let be the continuous spectrum o N; let
and let [K(2)} be the spectral amily of N. Since the roector K(’)
s permutable with each of N and N*,

N(--K(’)) [N(--(’))] * [N(--(’))] *. N(--(’))
in . N(I--K(’)) is therefore a bounded normal operator. Fur-
thermore it is readily verified that not only {} is the point spectrum
of N(I--K(’)), but that also

(’))-f d();N(I--
{} U a

and hence it is found that is the continuous spectrum of
N(I--K(’)). Ths result is useful or pplications o the spectrl
theory to the function theory.


