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138. The Relativity Theory in the Einstein Space under
the Extended Lorentz Transformation Group

By Tsurusaburo TAKASU
Tohoku University, Sendai

(Comm. by Zyoiti SUETUNA, M.J.A., NOV. 12, 1963)

The general theory of relativity of A. Einstein was based on the
non-definite quadratic differential form
( 1 ) dS2-- g,(x) dx"dx, (2,/, ,,... 1, 2, 3, 4)
and grasped as the Riemannian geometry of the Einstein space:

(i) R,.--0. (ii) R,--g,.
the path of a free particle being the geodesic curve:

dx {} dx dx_o.2 )
dS---Y+ dS d

The fundamental assumption was the so-called principle of equivalence.
The merit was the geometrization of physics. But the demerit was
the obscurity of the physical side caused by the laborious calculations

in terms of gp and [,} as well as by too much forcing physical

interpretations. Thus the Einstein’s theory has remained merely as
a conjecture for the last 47 years without becoming a decisive immortal
theory.

With the hope to make it a decisive theory comparable with the
Newton’s theory, the present author (1-14) started with the ex-
pressibility of (1) in the form

(3) dS2--ggx"dx-(--l)+%, (w-w(x)dx",]O)
4except undergoing extended orthogonal transformations of (1+

having discovered the extended orthogonal transformations with func-
tions of coordinates (x) as coefficients and simplified calculations

and {} respec-extremely by taking w(x) and A in place of
tively, where

2
3x -- 3x-is the parameter of teleparallelism of w(x") and 9(x), and

(5)
the ’s being the Kronecker deltas. The equations of motion of a
free particle were

{dx dx" dx }d$ d +A -0,(6)
dS dS dS dS dS dS

whose finite equations are
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7 ) -aS+c, (a, c" const.),
which represent the author’s II-geodesics in 4 dimension, which behave
as for meet and join as well as for the extremal S--O like straight
lines, the identity (6) having been discovered by the present author.
The () were called by the present author the II-geodesic ’ectangular
coordinates referred to the II-geodesic -axes. The (x) might have
been local curvelinear coordinates. But the author started with the
Cartesian coordinates, etc."
(8) x--x, x--y, x--z, x--ir--ict, (t--time)
in order to make the physical side clear and transparent. He grasped
([9-[10) his theory of general relativity as his 3-dimensional ex-
tended equiform Laguerre geometry under his extended equiform
Laguerre transformation group of
(9) e--a(P)em+zao, (a--const., et--1/2(l+),
(10) --w,(x)ex" +eOo, (w0--const., --1/2(1 +),
where (a()) and (w(x)) are orthogonal matrices with determinant
#-0. The transformations (9) and (10) (accompanied by (8)) are
extended Lorentz transformations so-to-speak. The space element
is an oriented sphere with center (c, y, z) and radius r or its maps by
(9) including (10). The ds such that

(11) ds- (-- 1)+dx dx 0
is the (usually pure imaginary) common tangential segment of two
consecutive oriented spheres (x’), (x+dx). We utilize dS such that
(12) dS2- --ds>O,
and identify w(x) with the momentum-potential vector, so that dS
is the action and S the action function. The II-geodesics (6)in 4
dimension are in 3 dimension "Kanalflchen" enveloped by oriented
II-geodesic spheres with the particle (x, x, x) as center and a II-

O9geodesic radius f- ds.
In this note, it will first be shown that the relatio
d d O9 (..dx dx dx _

O9 +(13)
dZ. dZ dS--Ogi\ dS + dS dS \dS [" ---/

holds and then we will compare the two theories of relativity of
A. Einstein and the present author, so that the decisive eternity
(comparable with that of Newton’s law) of the present author’s theory
will become clear, while the Einstein’s theory remains, contrary to
our hope, merely as an historical conjecture. The essential difference
consists in the ways of identifications of the geometric objects with
the physical objects and in the present author’s 3-dimensional extended
equiform Laguerre geometrical grasping of the geometrical law.

Iirst proof of (13). In the theory of an-holonomic system, the
following relations are known:
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(14)

(15)

(21)

SO that

(22) { ( ) (8o
The contraction Z2 yields us
(23)
what shows us the relation (13).

Fourth proof of (13). We obtain

gS dS d gS

as solutions of one and
tions of arameters being

dx" dx=o
dZ

same extremal problem S=0, the varia-

where {h/k} is constructed with g. In case (3), we have

I+.(16) g-- (-- 1) ,
that {h}--0 and thus (15)becomesSO

(17)
dS o\--+ dS dS

which, taken together with the author’s identity (6), shows (13).
Second proof of (13). We know

(18) g,
Hence

We can show

3x 1+ 3x" idx"dxO

as follows.

The left-hand side--2D(0 0d"g
Ox 3x !

2(9dw--9dw6) 2w(9dw 9do) 0.
Third proof of (13). According to [16, we set
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x, . dx___ d$ o dx dx" +o dx"..
dS" dS x dS dS dS

(The cyclic case!)

The Meaning of the Relation (13).
The straight lines in the 4-dimensional Minkowski space are geo-

desic curves as well as II-geodesic curves at the same time. The II-
d.$geodesic curves -0, ($t-azS-c) are the maps of the straight
dS

lines (24) by the extended Lorentz transformation (10), the laws of
meet, join and the extremal S--0 being retained.

Comparison of the Theories of Relativity of

A. Einstein. T. Takasu.
1. Geometrization of physics.

2. O<dS.-g,dx,dx. 0<dS.-(--1)+(o%, (o--odx,),
except undergoing extended equi-
form Laguerre transformations.

3. g,(x) generalized gravi- (o(x): momentum-potential vector
rational potential. 2 way components, gravitational

or electromagnetic, or both.
4. One starts One starts with (x) (x, y, z, it),

o being written in invariant
form, and afterwards

with curvelinear coordinates (x).
5. Interval dS. Action dS.
6. Receptacle of physical phenomena:

space-time {x’}->Einstein space. Cartesian space (x, y,z), t being

7. Path of a free particle:
dx {} dx dx=O.
dS----+ dS dS
geodesic in the Einstein space. Cf.
(3).

8. Riemannian geometry of
Eistein space.

9 Group of transformations

--(x) preserving dS: ’2-11- 0.

10. Physical change.

treated as in the classical manner.

d (dx dx" dx)_O:dS + dZ dZ
II-geodesic in 4 dimension--series
of oriented II-geodesic spheres

(x, y,z; (4dS ).2dS
Extend equiform Laguerre geo-
metry.
3-dimensional extended equiform
Laguerre (extended Lorentz) trans-
formation group (9), (10).
Extended equiform Laguerre
transformation.
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11. (i) Schwarzschild’s form:

dS-(p)dt--T(P)-ldp2--P2d--P sind, (r(P)- 1---2m);P
(ii) Takasu’s form: dS=y(p)dt--(p)-ldp--p2d0--p sin Od?,

( ( ) 1 h, C=cnst’)----h 1--2mu-- 2m +C--C- u=--;
h.u u p

(i) (i), (ii)

-+planetary orbit: d----U-U -u= m +3mu,d h
supported by 3 famous observations.

12 Principle of equivalence.

13 Relativity.

14 Gravitation theory.
15 Gravitational wave,

Maxwell’s equations (approxi-
mation theory).

16" .

17" . .
18" , ,

19. Special relativity:
dS cdt dx-dy-- dz,

under the Lorentz group, the space
element being a point in the
Minkowski space.

Invariancy of physical pheno-
mena by extended equiform
Laguerre transformations.
Referring to moving coordinate
system (t).
Physics of acceleration.
Exact gravitational wave, exact
Maxwell’s equations ([9, [10,
[14).
Schr6dinger-Goldon equation re-

ferred to moving coordinate system

Dirac equation referred to moving
coordinate system () 9.
Principle of least work: dS-o

dt
equations of force lines

(II-geodesic curves).
Physics of uniform motion:

dS.= (c.dt)._ (cdx)
--(cdy)--(cdz),

under the Laguerre group, the
space element being an oriented
sphere with center (x, y,z) and
radius r- ct.

=c dt
dS

FitsGerald factor (1 dx+dy+dz)-1/2

c2dt
dt
dS

20 Classical physics, theory of special relativity, gravitation
theory, electromagnetic theory, and the universally accepted part of
the quantum theory are



No. 9] Relativity Theory in Einstein Space etc. 625

not unified.
21 An approximation theo-

ry, mere conjecture.

unified.
Decisive exact theory with eternity
character as the Newton’s theory.
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