164. A Note on the Functional-Representations of Normal Operators in Hilbert Spaces. II

By Sakuji Inoue
Faculty of Education, Kumamoto University
(Comm. by Kinjirô Kunugi, m.J.A., Dec. 12, 1963)

In this paper we shall discuss the most general type of the func-tional-representations for normal operators in the abstract Hilbert space \mathfrak{K} which is separable and infinite dimensional.

Lemma A. Let $\left(\beta_{i j}\right)$ denote any infinite complex matrix

$$
\left[\begin{array}{cccccc}
\beta_{11} & \beta_{12} & \beta_{13} & \cdot & \cdot & \cdot \\
\beta_{21} & \beta_{22} & \beta_{23} & \cdot & \cdot & \cdot \\
\beta_{31} & \beta_{32} & \beta_{33} & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]
$$

where $\sum_{i, j=1}^{\infty}\left|\beta_{i j}\right|^{2}<\infty$; and let B denote the operator associated with $\left(\beta_{i j}\right)$ in Hilbert coordinate space l_{2}. Then, in order that the bounded operator B be normal in l_{2}, it is necessary and sufficient that $\sum_{\nu=1}^{\infty} \beta_{i \nu} \bar{\beta}_{j \nu}=\sum_{\nu=1}^{\infty} \bar{\beta}_{\nu i} \beta_{\nu j}$ for every pair of $i, j=1,2,3, \cdots$.

Proof. Since, by hypotheses, $\sum_{i, j=1}^{\infty}\left|\beta_{i j}\right|^{2}<\infty$, it is easily verified with the help of Cauchy's inequality that $\|B \tilde{x}\|^{2} \leqq \sum_{i, j=1}^{\infty}\left|\beta_{i j}\right|^{2} \cdot\|\tilde{x}\|^{2}$ for every $\tilde{x} \in l_{2}$. Hence B is a bounded operator in l_{2}. Now we consider the transposed matrix $\left(\bar{\beta}_{i j}\right)^{T}$ of $\left(\bar{\beta}_{i j}\right)$, which is obtained from $\left(\bar{\beta}_{i j}\right)$ by interchanging rows and columns in ($\vec{\beta}_{i j}$), and denote by \widetilde{B} the operator associated with $\left(\bar{\beta}_{i j}\right)^{T}$ in l_{2}. Then, for every pair of elements $\tilde{x}=\left(x_{1}, x_{2}, x_{3}, \cdots\right)$ and $\tilde{y}=\left(y_{1}, y_{2}, y_{3}, \cdots\right)$ belonging to l_{2} we have

$$
\begin{aligned}
(\tilde{x}, \widetilde{B} \tilde{y}) & =\sum_{j=1}^{\infty}\left[\sum_{i=1}^{\infty} \beta_{i j} \bar{y}_{i}\right] x_{j} \\
& =\sum_{i=1}^{\infty}\left[\sum_{j=1}^{\infty} \beta_{i j} x_{j}\right] \bar{y}_{i} \\
& =(B \tilde{x}, \tilde{y}),
\end{aligned}
$$

because the absolute convergency of these iterated infinite sums can be verified by virtue of the applications of Cauchy's inequality and the hypothesis $\sum_{i, j=1}^{\infty}\left|\beta_{i j}\right|^{2}<\infty$. Hence \widetilde{B} is the adjoint operator B^{*} of B in l_{2}. By making use of this result we can readily verify that $B B^{*}$ is the bounded operator associated with the matrix ($\sum_{\nu=1}^{\infty} \beta_{i \nu} \bar{\beta}_{j_{\nu}}$)
where $\sum_{\nu=1}^{\infty} \beta_{i \nu} \bar{\beta}_{j \nu}$ denotes the element appearing in row i column j and that $B^{*} B$ is the bounded operator associated with the matrix ($\sum_{\nu=1}^{\infty} \bar{\beta}_{\nu j} \beta_{\nu j}$) where the index i denotes the number of the row and the index j denotes the number of the column. In consequence, a necessary and sufficient condition that $B B^{*}=B^{*} B$ in l_{2} is that $\sum_{\nu=1}^{\infty} \beta_{i \nu} \bar{\beta}_{j \nu}$ $=\sum_{\nu=1}^{\infty} \bar{\beta}_{\nu i} \beta_{\nu j}$ for every pair of $i, j=1,2,3, \cdots$, as we were to prove.

Remark C. It is at once obvious that if $\left(\beta_{i j}\right)$ is a unitary matrix or an Hermite matrix stated in the earlier discussion, the relation $\sum_{\nu=1}^{\infty} \beta_{i \nu} \bar{\beta}_{j \nu}=\sum_{\nu=1}^{\infty} \bar{\beta}_{\nu i} \beta_{\nu j}$ holds for every pair of $i, j=1,2,3, \cdots$. Besides these particular matrices, however, there are many matrices satisfying the just established relation. For example, the matrix ($\beta_{j k}$) $=\left(\frac{e^{i \theta}}{2^{(j+k)}}\right),(i=\sqrt{-1}, 0<\theta<\pi)$, is a desired matrix which is neither unitary nor Hermitian.

Definition. Any infinite matrix ($\beta_{i j}$) satisfying the conditions $\sum_{\nu=1}^{\infty} \beta_{i \nu} \bar{\beta}_{j \nu}=\sum_{\nu=1}^{\infty} \bar{\beta}_{\nu i} \beta_{\nu j}, i, j=1,2,3, \cdots$, is called a normal matrix.

Theorem B. Let $\left\{\varphi_{\nu}\right\}_{\nu=1,2,3, \ldots}$ and $\left\{\psi_{\mu}\right\}_{\mu=1,2,3, \ldots}$ both be incomplete orthonormal sets which are mutually orthogonal and by which a complete orthonormal system in the abstract Hilbert space \mathfrak{F} is constructed; let $\left\{\lambda_{\nu}\right\}_{\nu=1,2,3, \ldots}$ be an arbitrarily prescribed bounded sequence of complex numbers (inclusive of the respective multiplicities); let L_{x} be the continuous linear functional associated with any $x \in \mathscr{S}$; let $\left(\beta_{i j}\right)$ be a bounded normal matrix with $\sum_{i, j=1}^{\infty}\left|\beta_{i j}\right|^{2}<\infty$ and $\sum_{j=1}^{\infty}\left|\beta_{\mu_{j}}\right|^{2}$ $\neq\left|\beta_{\mu \mu}\right|^{2}, \mu=1,2,3, \cdots$; let $\Psi_{\mu}=\sum_{j=1}^{\infty} \beta_{\mu j} \psi_{j}$; let c be an arbitrarily given complex constant; and let N be the operator defined by

$$
\begin{equation*}
N=\sum_{\nu=1}^{\infty} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}+c \sum_{\mu=1}^{\infty} \Psi_{\mu} \otimes L_{\varphi_{\mu}} \tag{1}
\end{equation*}
$$

in the sense of $N x=\sum_{\nu=1}^{\infty} \lambda_{\nu}\left(x, \varphi_{\nu}\right) \varphi_{\nu}+c \sum_{\mu=1}^{\infty}\left(x, \psi_{\mu}\right) \Psi_{\mu},(x \in \mathfrak{S})$. Then this functional-representation defining N converges uniformly and the N is a bounded normal operator with point spectrum $\left\{\lambda_{\nu}\right\}$ in \mathfrak{j}; and moreover $\|N\|=\max \left(\sup \left|\lambda_{\nu}\right|,|c| \cdot\|B\|\right)$ where B denotes the operator associated with the matrix $\left(\beta_{i j}\right)$ in Hilbert coordinate space l_{2}.

Proof. From the hypothesis concerning $\left(\beta_{i j}\right)$ it is found that the operator B associated with ($\beta_{i j}$) is a bounded operator in l_{2}, as already shown at the beginning of the proof of Lemma A. By the same methods as those used to prove Theorem A in the preceding paper, we can therefore show that

$$
\|N x\|^{2}=\sum_{\nu=1}^{\infty}\left|\lambda_{\nu}\right|^{2}\left|L_{\varphi_{\nu}}(x)\right|^{2}+|c|^{2} \sum_{k=1}^{\infty}\left|\sum_{\mu=1}^{\infty} \beta_{\mu k} L_{\psi_{\mu}}(x)\right|^{2} \quad(x \in \mathfrak{S}),
$$

and that

$$
\begin{aligned}
\left\|B^{*} f\right\|^{2} & \left.=\sum_{k=1}^{\infty}\left|\sum_{\mu=1}^{\infty} \overline{\beta_{\mu k}} \overline{L_{\varphi_{\mu}}(x)}\right|^{2}\left(f=\overline{\left(L_{\psi_{1}}(x)\right.}, \overline{L_{\phi_{2}}(x)}, \overline{L_{\psi_{3}}(x)}, \cdots\right) \in l_{2}\right) \\
& \leqq B^{*}\left\|^{2}\right\| f\left\|^{2}=\right\| B\left\|^{2}\right\| f \|^{2}<\infty .
\end{aligned}
$$

Accordingly

$$
\begin{aligned}
\|N x\|^{2} & \leqq \sum_{\nu=1}^{\infty}\left|\lambda_{\nu}\right|^{2}\left|L_{\varphi_{\nu}}(x)\right|^{2}+|c|^{2}\|B\|^{2} \sum_{\mu=1}^{\infty}\left|L_{\psi_{\mu}}(x)\right|^{2} \quad(x \in \mathfrak{S}) \\
& \leqq M^{2}\|x\|^{2} \quad\left(M=\max \left(\sup _{\nu}\left|\lambda_{\nu}\right|,|c| \cdot\|B\|\right)\right) .
\end{aligned}
$$

Moreover, if x is an element belonging to the subspace determined by a $\varphi_{\nu},\|N x\|=\left|\lambda_{\nu}\right|\|x\|$; and if, on the contrary, x is in the subspace determined by the set $\left\{\psi_{\mu}\right\}$,
$\|N x\|=|c|\left\|B^{*} f\right\| \leqq|c|\left\|B^{*}| || | f| |=|c|\right\| B\left|\|||x||\left(f=\left(\overline{L_{\varphi_{1}}(x)}, \overline{L_{\varphi_{2}}(x)}, \cdots\right) \in l_{2}\right)\right.$.
Consequently N is a bounded operator with norm M in \mathfrak{g}.
Since, as can be found from the above discussion, it is easily verified that

$$
\left\|\sum_{\nu=p}^{\infty} \lambda_{\nu} L_{\varphi_{\nu}}(x) \varphi_{\nu}+c \sum_{\mu=p}^{\infty} L_{\varphi_{\mu}}(x) \Psi_{\mu}\right\|^{2} \leqq M^{2}\left(\sum_{\nu=p}^{\infty}\left|L_{\varphi_{\nu}}(x)\right|^{2}+\sum_{\mu=p}^{\infty}\left|L_{\varphi_{\mu}}(x)\right|^{2}\right) \quad(x \in \mathfrak{S})
$$

and hence that for an arbitrarily given positive number ε there exists a suitably large number G such that

$$
\left\|\sum_{\nu=p}^{\infty} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}+c \sum_{\mu=p}^{\infty} \Psi_{\mu} \otimes L_{\varphi_{\mu}}\right\|<\varepsilon \quad(p \geqq G)
$$

Hence the functional series on the right of (1) is uniformly convergent.

Next we consider the operator \bar{N} defined by

$$
\bar{N}=\sum_{\nu=1}^{\infty} \bar{\lambda}_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}+\bar{c} \sum_{\mu=1}^{\infty} \Psi_{\mu}^{*} \otimes L_{\varphi_{\mu}}
$$

where $\Psi_{\mu}^{*}=\sum_{j=1}^{\infty} \bar{\beta}_{j \mu} \psi_{j}, \mu=1,2,3, \cdots$. Since, as in the proof of Theorem A, it is shown by direct computation that

$$
(N x, y)=\sum_{\nu=1}^{\infty} \lambda_{\nu} L_{\varphi_{\nu}}(x) \overline{L_{\varphi_{\nu}}(y)}+c \sum_{\mu=1}^{\infty}\left[\sum_{k=1}^{\infty} \beta_{k \mu} L_{\varphi_{k}}(x)\right] \overline{L_{\varphi_{\mu}}(y)}=(x, \bar{N} y)
$$

for every pair of $x, y \in \mathscr{F}, \bar{N}$ is identical with the adjoint operator N^{*} of N. Hence

$$
N N^{*} x=\sum_{\nu=1}^{\infty}\left|\lambda_{\nu}\right|^{2} L_{\varphi_{\nu}}(x) \varphi_{\nu}+|c|^{2} \sum_{\mu=1}^{\infty}\left[\sum_{k=1}^{\infty} \bar{\beta}_{\mu k} L_{\psi_{k}}(x)\right] \Psi_{\mu}
$$

and

$$
N^{*} N x=\sum_{\nu=1}^{\infty}\left|\lambda_{\nu}\right|^{2} L_{\varphi_{\nu}}(x) \varphi_{\nu}+|c|^{2} \sum_{\mu=1}^{\infty}\left[\sum_{k=1}^{\infty} \beta_{\kappa \mu} L_{\varphi_{k}}(x)\right] \Psi_{\mu}^{*}
$$

for every $x \in \mathfrak{H}$. On the other hand, since it is verified with the aid of the hypothesis $\sum_{i, j=1}^{\infty}\left|\beta_{i j}\right|^{2}<\infty$ and Cauchy's inequality that both $\sum_{\mu=1}^{\infty}\left[\sum_{k=1}^{\infty}\left|\bar{\beta}_{\mu k} \beta_{\mu j} L_{\psi_{k}}(x)\right|\right]$ and $\sum_{\mu=1}^{\infty}\left[\sum_{k=1}^{\infty}\left|\beta_{k \mu} \bar{\beta}_{j_{\mu}} L_{\psi_{k}}(x)\right|\right]$ converge for $j=1,2,3$, ..., we have

$$
\sum_{\mu=1}^{\infty}\left[\sum_{k=1}^{\infty} \bar{\beta}_{\mu k} L_{\varphi_{k}}(x)\right] \Psi_{\mu}=\sum_{j=1}^{\infty}\left[\sum_{k=1}^{\infty} \sum_{\mu=1}^{\infty} \bar{\beta}_{\mu k} \beta_{\mu j} L_{\varphi_{k}}(x)\right] \psi_{j}
$$

and

$$
\sum_{\mu=1}^{\infty}\left[\sum_{k=1}^{\infty} \beta_{k \mu} L_{\psi_{k}}(x)\right] \Psi_{\mu}^{*}=\sum_{j=1}^{\infty}\left[\sum_{k=1}^{\infty} \sum_{\mu=1}^{\infty} \beta_{k \mu} \bar{\beta}_{j \mu} L_{\psi_{k}}(x)\right] \psi_{j}
$$

where, by hypotheses, $\sum_{\mu=1}^{\infty} \bar{\beta}_{\mu \kappa} \beta_{\mu j}=\sum_{\mu=1}^{\infty} \beta_{\kappa \mu} \bar{\beta}_{j \mu}$ for every pair of $\kappa, j=1,2,3$, \cdots. These results lead us to the conclusion that $N N^{*} x=N^{*} N x$ for every $x \in \mathfrak{5}$. Thus N is a normal operator in $\mathfrak{5}$.

Furthermore the hypothesis $\sum_{j=1}^{\infty}\left|\beta_{\mu j}\right|^{2} \neq\left|\beta_{\mu \mu}\right|^{2}$ for $\mu=1,2,3, \cdots$ enables us to assert that N has no eigenvalue other than $\lambda_{\nu}, \nu=1,2,3, \cdots$, as can be seen by following the argument used in the proof of the case where $\left(\beta_{i j}\right)$ is an infinite unitary matrix with $\left|\beta_{j j}\right| \neq 1, j=1,2$, $3, \cdots$ [cf. Proc. Japan Acad., Vol. 37, p. 617 (1961)].

With these results the proof of the theorem is complete.
Next we shall consider the question as to whether conversely any bounded normal operator with point spectrum $\left\{\lambda_{\nu}\right\}$ in \mathfrak{F} can be expressed by such a functional-representation as was defined by the right-hand member of (1).

Theorem C. Let N be a bounded normal operator in \mathfrak{F}; let $\left\{\lambda_{\nu}\right\}_{\nu=1,2,3, \ldots}$ be its point spectrum (inclusive of the multiplicity of each eigenvalue); let φ_{ν} be a normalized eigenelement of N corresponding to the eigenvalue λ_{ν} for any value of $\nu=1,2,3, \cdots$; let $\left\{\psi_{\mu}\right\}_{\mu=1,2,3}, \ldots$ be an incomplete orthonormal set orthogonal to $\left\{\varphi_{\nu}\right\}_{\nu=1,2,3} \ldots$ such that a complete orthonormal system in \mathfrak{J} can be constructed by these two orthonormal sets $\left\{\varphi_{\nu}\right\}$ and $\left\{\psi_{\mu}\right\}$; let c be a non-zero complex constant; and let $\Psi_{\mu}=\sum_{j=1}^{\infty} \beta_{\mu j} \psi_{j}$ where $\beta_{\mu j}=\left(N \psi_{\mu}, \psi_{j}\right) / c$ for every pair of μ, j $=1,2,3, \cdots$. Then N is expressed in the form

$$
N=\sum_{\nu=1}^{\infty} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}+c \sum_{\mu=1}^{\infty} \Psi_{\mu} \otimes L_{\varphi_{\mu}}
$$

and both $\sum_{j=1}^{\infty}\left|\beta_{j \mu}\right|^{2}$ and $\sum_{j=1}^{\infty}\left|\beta_{\mu j}\right|^{2}$ never exceed $\|N\|^{2} /|c|^{2}$ for every value of $\mu=1,2,3, \cdots$. Furthermore, not only ($\beta_{i j}$) is a normal matrix with $\sum_{j=1}^{\infty}\left|\beta_{\mu j}\right|^{2} \neq\left|\beta_{\mu \mu}\right|^{2}, \mu=1,2,3, \cdots$, but also the operator B associated with $\left(\beta_{i j}\right)$ is a bounded (normal) operator in l_{2}.

Proof. Since, by hypotheses, a complete orthonormal system in $\mathfrak{5}$ can be constructed by the mutually orthogonal sets $\left\{\varphi_{\nu}\right\}$ and $\left\{\psi_{\mu}\right\}$ and since φ_{ν} is a normalized eigenelement of N^{*} corresponding to the eigenvalue $\bar{\lambda}_{\nu}$, we have

$$
\begin{aligned}
N x & =\sum_{\nu=1}^{\infty}\left(N x, \varphi_{\nu}\right) \varphi_{\nu}+\sum_{j=1}^{\infty}\left(N x, \psi_{j}\right) \psi_{j} \\
& =\sum_{\nu=1}^{\infty} \lambda_{\nu}\left(x, \varphi_{\nu}\right) \varphi_{\nu}+\sum_{j=1}^{\infty}\left(x, N^{*} \psi_{j}\right) \psi_{j}
\end{aligned}
$$

for every $x \in \mathfrak{5}$. Since, moreover, $\left(N^{*} \psi_{j}, \varphi_{\nu}\right)=\left(\psi_{j}, N \varphi_{\nu}\right)=\bar{\lambda}_{\nu}\left(\psi_{j}, \varphi_{\nu}\right)=0$,

$$
\begin{aligned}
\left(x, N^{*} \psi_{j}\right) & =\sum_{\nu=1}^{\infty}\left(x, \varphi_{\nu}\right)\left(\overline{N^{*} \psi_{j}, \varphi_{\nu}}\right)+\sum_{\mu=1}^{\infty}\left(x, \psi_{\mu}\right)\left(\overline{N^{*} \psi_{j}, \psi_{\mu}}\right) \\
& =c \sum_{\mu=1}^{\infty} \beta_{\mu j}\left(x, \psi_{\mu}\right),
\end{aligned}
$$

so that

$$
\begin{equation*}
N x=\sum_{\nu=1}^{\infty} \lambda_{\nu} L_{\varphi_{\nu}}(x) \varphi_{\nu}+c \sum_{j=1}^{\infty}\left[\sum_{\mu=1}^{\infty} \beta_{\mu j} L_{\psi_{\mu}}(x)\right] \psi_{j} . \tag{2}
\end{equation*}
$$

On the other hand, by reference to the relations $\left(N^{*} \psi_{\mu}, \varphi_{j}\right)=0$, ($\mu, j=1,2,3, \cdots$), we have

$$
\sum_{j=1}^{\infty}\left|\beta_{j \mu}\right|^{2}=\frac{1}{|c|^{2}} \sum_{j=1}^{\infty}\left|\left(\overline{N^{*} \psi_{\mu}, \psi_{j}}\right)\right|^{2}=\frac{\left\|N^{*} \psi_{\mu}\right\|^{2}}{|c|^{2}} \leqq \frac{\|N\|^{2}}{|c|^{2}}
$$

and similarly $\sum_{j=1}^{\infty}\left|\beta_{\mu_{j}}\right|^{2} \leqq\|N\|^{2} /|c|^{2}$ for every $\mu=1,2,3, \cdots$ Accordingly $\sum_{j=1}^{\infty} \beta_{\mu j} \psi_{j} \in \mathfrak{F}$ and

$$
\begin{aligned}
\left|\sum_{\mu=1}^{\infty} \beta_{\mu j} L_{\psi_{\mu}}(x)\right|^{2} & \leqq\left\{\sum_{\mu=1}^{\infty}\left|\beta_{\mu j} L_{\psi_{\mu}}(x)\right|\right\}^{2} \\
& \leqq \frac{\|N\|^{2}\|x\|^{2}}{|c|^{2}}
\end{aligned}
$$

which implies that $\sum_{j=1}^{\infty}\left[\sum_{\mu=1}^{\infty} \beta_{\mu_{j}} L_{\psi_{\mu}}(x)\right] \psi_{j}$ is in fact an element belonging to \mathfrak{h}. From (2) we thus obtain the relation

$$
N x=\sum_{\nu=1}^{\infty} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}(x)+c \sum_{\mu=1}^{\infty} \Psi_{\mu} \otimes L_{\varphi_{\mu}}(x)
$$

holding for every $x \in \mathfrak{H}$, so that

$$
N=\sum_{\nu=1}^{\infty} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}+c \sum_{\mu=1}^{\infty} \Psi_{\mu} \otimes L_{\varphi_{\mu}},
$$

as we wished to prove.
By making use of the relations $\left(N \psi_{i}, \varphi_{\nu}\right)=0,(i, \nu=1,2,3, \cdots)$, we next have

$$
\begin{aligned}
\sum_{\mu=1}^{\infty} \beta_{i \mu} \bar{\beta}_{j \mu} & =\frac{1}{|c|^{2}} \sum_{\mu=1}^{\infty}\left(N \psi_{i}, \psi_{\mu}\right)\left(\overline{N \psi_{j}, \psi_{\mu}}\right) \\
& =\frac{\left(N \psi_{i}, N \psi_{j}\right)}{|c|^{2}} \\
& =\frac{\left(N^{*} N \psi_{i}, \psi_{j}\right)}{|c|^{2}}
\end{aligned}
$$

and similarly

$$
\sum_{\mu=1}^{\infty} \bar{\beta}_{\mu_{i}} \beta_{\mu_{j}}=\frac{\left(N N^{*} \psi_{i}, \psi_{j}\right)}{|c|^{2}}
$$

Since, in addition, N is bounded and normal by hypotheses, $N^{*} N$ $=N N^{*}$ in $\mathscr{5}$ and hence the just established relations permit us to conclude that $\sum_{\mu=1}^{\infty} \beta_{i \mu} \bar{\beta}_{j \mu}=\sum_{\mu=1}^{\infty} \bar{\beta}_{\mu i} \beta_{\mu j}$. This last result shows that the matrix $\left(\beta_{i j}\right)$ is normal. We must here prove that $\sum_{j=1}^{\infty}\left|\beta_{\mu j}\right|^{2} \neq\left|\beta_{\mu \mu}\right|^{2}$ for every value of $\mu=1,2,3, \cdots$. However this is a direct consequence
of the hypothesis that the eigenspace of N is determined by the set $\left\{\varphi_{\nu}\right\}$: for, if $\sum_{j=1}^{\infty}\left|\beta_{\mu j}\right|^{2}=\left|\beta_{\mu \mu}\right|^{2}$ for $\mu=\kappa$, we would have

$$
\begin{aligned}
N \psi_{k} & =\sum_{\nu=1}^{\infty} \lambda_{\nu}\left(\psi_{k}, \varphi_{\nu}\right) \varphi_{\nu}+c \sum_{\mu=1}^{\infty}\left[\left(\psi_{k}, \psi_{\mu}\right) \sum_{j=1}^{\infty} \beta_{\mu j} \psi_{j}\right] \\
& =\beta_{k x} \psi_{k}
\end{aligned}
$$

contrary to that hypothesis.
Lastly it remains only to prove that the operator B associated with the matrix $\left(\beta_{i j}\right)$ is bounded in l_{2}. Let now $\tilde{x}=\left(x_{1}, x_{2}, x_{3}, \cdots\right) \in l_{2}$, and let $f=\sum_{\mu=1}^{\infty} \bar{x}_{\mu} \psi_{\mu}$. Then, since $\sum_{\mu=1}^{\infty}\left|\bar{x}_{\mu}\right|^{2}<\infty, f$ is an element belonging to the subspace determined by the set $\left\{\psi_{\mu}\right\}$ and hence $\bar{x}_{\mu}=\left(f, \psi_{\mu}\right)$. In consequence, by applying again the relations $\left(N \psi_{j}, \varphi_{\nu}\right)=\left(N^{*} f, \varphi_{\nu}\right)$ $=0,(j, \nu=1,2,3, \cdots)$, and the hypothesis that a complete orthonormal system in \mathfrak{F} is constructed by the two sets $\left\{\varphi_{\nu}\right\}$ and $\left\{\psi_{\mu}\right\}$, we obtain

$$
\begin{aligned}
\|B \tilde{x}\|^{2} & =\sum_{j=1}^{\infty}\left|\sum_{\mu=1}^{\infty} \beta_{j \mu} x_{\mu}\right|^{2} \\
& =\frac{\sum_{j=1}^{\infty}\left|\sum_{\mu=1}^{\infty}\left(N \psi_{j}, \psi_{\mu}\right)\left(\overline{f, \psi_{\mu}}\right)\right|^{2}}{|c|^{2}} \\
& =\frac{\sum_{j=1}^{\infty}\left|\left(N \psi_{j}, f\right)\right|^{2}}{|c|^{2}} \\
& =\frac{\sum_{j=1}^{\infty}\left|\left(\overline{N^{*} f, \psi_{j}}\right)\right|^{2}}{|c|^{2}} \\
& =\frac{\left\|N^{*} f\right\|^{2}}{|c|^{2}} \\
& \leqq \frac{\|N\|^{2}\|\tilde{x}\|^{2}}{|c|^{2}}
\end{aligned}
$$

This final inequality shows that B is a bounded operator in l_{2}, as we were to prove.

The theorem has thus been proved.

