160. The Asymptotic Behaviour of the Solution of a Semi-linear Partial Differential Equation Related to an Active Pulse Transmission Line

By Masaya Yamaguti

(Comm. by Kinjirô Kunugi, M.J.A., Dec. 12, 1963)

1. Introduction. J. Nagumo [1] proposed as active pulse transmission line simulating an animal nerve axon. The equation of propagation of his line is the following:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{3} u}{\partial x^{2} \partial t}-\mu\left(1-u+\varepsilon u^{2}\right) \frac{\partial u}{\partial t}-u \quad \begin{align*}
& \mu>0, \varepsilon>0 \tag{1}\\
& x>0, t>0
\end{align*}
$$

with the boundary data;

$$
\begin{cases}u(x, 0)=0 & (x \geq 0) \tag{2}\\ u_{t}(x, 0)=0 & (x \geq 0) \\ u(0, t)=\psi(t) & (t \geq 0), \psi(t) \equiv 0 \quad \text { for } \quad t \geq t_{0} .\end{cases}
$$

In this note, we consider some asymptotic behaviours of the solution for the equation of related type with the same boundary data: Our equation is the following:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{3} u}{\partial x^{2} \partial t}-f^{\prime}(u) \frac{\partial u}{\partial t}-g(u) . \tag{3}
\end{equation*}
$$

At first, we remark that the existence of global solutions for this problem (3) with boundary data (2) where $\psi(t) \in C^{2}$ is assumed was completely proved by R. Arima and Y. Hasegawa [2] under the conditions:

$$
\left\{\begin{array}{l}
-K_{1} \leq f^{\prime}(u) \leq K_{0}\left(u^{2}+1\right), \tag{4}\\
|g(u)| \leq K_{2}\left(u^{2}+|u|\right), \\
G(u)=\int_{0}^{u}\{-g(z)\} d z \leq K_{3} u^{2}, \\
g(u), f^{\prime}(u) \in C^{1} .
\end{array}\right.
$$

Throughout this paper, we always assume that $f^{\prime}(u), g(u)$ satisfy this condition (4).

Our results are divided into two parts. The one is the case $g(u) \equiv u$, the other is the case $g(u) \equiv 0$. For the first case, we can prove that any solution $u(x, t)$ tends uniformly to zero, when t tends to $+\infty$, under the additional condition (5), which corresponds to the limitation $\varepsilon>\frac{3}{16}$ in (1). For the second case we can show the existence of a threshold value for the boundary data (Prop. 3) and a sort of asymptotic value under another additional conditions (Prop. 4), (9), (11), which is independent of (5).

We remark also that the summability in x, of $u(x, t)^{2}$ and $u_{x}(x, t)^{2}$,
which is shown in [2], will play an important role in our proofs.
2. The first case. We assume that $g(u) \equiv u$ and we also assume the following condition (5) (which will be imposed only in this section).

There exists a positive constant c such that

$$
\begin{equation*}
u f(u) \geq c u^{2} \text { where } f(u)=\int_{0}^{u} f^{\prime}(z) d z \tag{5}
\end{equation*}
$$

Then we have
Proposition 1. For arbitrary given data $\psi(t) \in C^{2}$ appeared in (2), the solution of (3) tends uniformly to zero when t tends to $+\infty$ under the condition (5).

Proof. We transform the equation (3) to a system of equations by integration with respect to t and putting $\int_{0}^{t} u(x, \tau) d \tau=w(x, t)$,

$$
\left\{\begin{array}{l}
u_{t}=u_{x x}-f(u)-w \tag{6}\\
w_{t}=u .
\end{array}\right.
$$

We use the following energy form to obtain an energy inequality, here we denote by $F(u)$ the primitive function of $f(u)$ taking $F(0)=0$,

$$
\begin{equation*}
E(t)=\int_{0}^{\infty}\left[\frac{u^{2}}{2}+\frac{u_{i}^{2}}{2}+k \frac{u_{x}^{2}}{2}+k F(u)+k \frac{(u+w)^{2}}{2}+L \frac{u^{2}+w^{2}}{2}\right] d x, \tag{7}
\end{equation*}
$$

where $k>K_{1}$ and L is a positive constant so large that it satisfies $\frac{k}{k+L}<c^{\prime}<c$. Differentiating (7) with respect to t, and by the integration by parts, we obtain

$$
\begin{align*}
E^{\prime}(t) & =-\int_{0}^{\infty}\left[u_{x t}^{2}+\left(f^{\prime}(u)+k\right) u_{\imath}^{2}+(k+L) u_{x}^{2}+(k+L) u f(u)-k u^{2}\right] d x \tag{8}\\
& \leq 0 \text { for } t \geq t_{0}
\end{align*}
$$

where t_{0} is a constant such that $\psi(t) \neq 0$ in $0 \leq t \leq t_{0}$ but $\psi(t) \equiv 0$ in $t \geq t_{0}$.

We can conclude from the differential inequality (8), following facts are finite:
a) $E(t)$ is non-increasing in t for $t \geq t_{0}$.
b) $0 \leq E(t) \leq E\left(t_{0}\right)$. Consequently $\lim _{t \rightarrow+\infty} E(t)$ exists.
c) Integrals:

$$
\int_{0}^{\infty} \frac{u^{2}}{2} d x, \int_{0}^{\infty} \frac{u_{t}^{2}}{2} d x, \int_{0}^{\infty} \frac{w^{2}}{2} d x, \int_{0}^{\infty} u_{x}^{2} d x \text { are bounded for } t \geq t_{0}
$$

d) Integrals:

$$
\int_{t_{0}}^{\infty} \int_{0}^{\infty} \frac{u^{2}}{2} d x d \tau, \int_{t_{0}}^{\infty} \int_{0}^{\infty} \frac{u_{t}^{2}}{2} d x d \tau, \int_{t_{0}}^{\infty} \int_{0}^{\infty} \frac{u_{x}^{2}}{2} d x d \tau, \int_{t_{0}}^{\infty} \int_{0}^{\infty} \frac{u_{x t}^{2}}{2} d x d \tau
$$

If we put $\varphi(t)=\int_{0}^{\infty}\left[\frac{u^{2}}{2}+\frac{u_{x}^{2}}{2}\right] d x$, we can show $\varphi(t) \rightarrow 0(t \rightarrow+\infty)$. Be-
cause,

$$
\begin{aligned}
& \left|\varphi(t)-\varphi\left(t^{\prime}\right)\right|=\left|\int_{\nu^{\prime}}^{t} \varphi^{\prime}(\tau) d \tau\right|=\int_{0}^{\infty} \int_{\nu^{\prime}}^{t}\left[u u_{t}+u_{x} u_{x t}\right] d x d \tau \\
& \leq\left[\int_{\nu^{\prime}}^{t} \int_{0}^{\infty} u^{2} d x d \tau\right]^{\frac{1}{2}}\left[\int_{\nu^{\prime}}^{t} \int_{0}^{\infty} u_{t}^{2} d x d \tau\right]^{\frac{1}{2}}+\left[\int_{\nu^{\prime}}^{t} \int_{0}^{\infty} u d x d \tau\right]^{\frac{1}{2}}\left[\int_{\nu^{\prime}}^{t} \int_{0}^{\infty} u_{x i}^{2} d x d \tau\right]^{\frac{1}{2}} .
\end{aligned}
$$

By d) above, we can find a constant T for arbitrary given $\varepsilon>0$, such that $\left|\varphi(t)-\varphi\left(t^{\prime}\right)\right|<\varepsilon$ for $t, t^{\prime}>T$. Then $\lim _{t \rightarrow+\infty} \varphi(t)$ exist and by the summability we see $\lim _{t \rightarrow+\infty} \varphi(t)=0$. Consequently we can prove that $\max _{0 \leq x<+\infty}|u(x, t)| \rightarrow 0$ for $t \rightarrow+\infty$, by the Sobolev's lemma.
3. The second case $(g(u) \equiv 0)$. At first we mention some additional conditions for this case:

$$
\left\{\begin{array}{llll}
f(u)<0 & (u<0), & f(u)<0 & (a<u<b), \tag{9}\\
f(u)>0 & (0<u<a), & f(u)>0 & (b>u),
\end{array}\right.
$$

here a and b are two distinct constants.
Under this condition (9), we can prove a generalized maximumminimum principle for the solution of (3) for $g(u)=0$. That is

Proposition 2. Under the condition (9), if B_{0} is a constant greater than b, then $u\left(x, t_{0}\right)<B_{0}$ implies always $u(x, t)<B_{0}$ for $t \geq t_{0}$, and $u\left(x, t_{0}\right) \geq 0$ implies $u(x, t) \geq 0$ for $t>t_{0}$.

Proof. If there is a point $\left(x_{1}, t_{1}\right)$ where $u\left(x_{1}, t_{1}\right)=B_{0}$, then we can consider the set E of $(x, t) t>t_{0}, 0 \leq x<+\infty$ such that $u(x, t)=B_{0}$. We can prove by the contradiction that there is a positive distance $\delta>0$ between the set E and the half straight line $t=t_{0} 0 \leq x<+\infty$. If not, there should be a sequence of points $\left(\xi_{n}, \tau_{n}\right)$ which tends to one point of this half line or $+\infty$ point of this half line, it signifies that there exists a point $\left(\xi, t_{0}\right)$ where $u\left(\xi, t_{0}\right)=B_{0}$ or a sequence of points $\left(\xi_{n}^{\prime}, t_{0}\right)\left(\xi_{n}^{\prime} \rightarrow+\infty\right)$ where $u\left(\xi_{n}^{\prime}, t_{0}\right) \geqq \frac{B_{0}}{2}$, by the fact that $u_{t}(x, t)$ is bounded for $0 \leq t \leq T$. (T is some constant $\geq t_{0}$.) This latter case contradicts to the fact that $u\left(x, t_{0}\right)^{2}$ and $u_{x}\left(x, t_{0}\right)^{2}$ are summable in $0 \leq x<+\infty$ [2].

Therefore we find a point $\left(x_{1}, t_{1}\right)$ where $u\left(x_{1}, t_{1}\right)=B_{0}, u(x, t)<B_{0}$ $\left(t_{0} \leq t<t_{1}, 0 \leq x<+\infty\right)$ and $u\left(x, t_{1}\right)<B\left(x<x_{1}\right)$. Because $u(x, t)$ is a solution of (2), (3), $u_{t}=u_{x x}-f(u), u_{x x}\left(x_{1}, t_{1}\right) \leq 0$ and $f\left(B_{0}\right)=f\left(u\left(x_{1}, t_{1}\right)\right)$. Consequently $u_{t}\left(x_{1}, t_{1}\right)<0$, this means that there exists a point $\left(x_{1}, t_{2}\right)$ $\left(t_{2}<t_{1}\right)$ such that $u\left(x_{1}, t_{2}\right)>u\left(x_{1}, t_{1}\right)=B_{0}$. This is a contradiction. The same argument shows that $u\left(x, t_{0}\right) \geq 0$ implies $u(x, t) \geq 0$ for $t \geq t_{0}$.

We add still one additional assumption:
(10) There exist two positive constants c_{1} and a_{1} such that

$$
u f(u) \geq c_{1}\left(u^{2}+F(u)\right) \text { for } 0 \leq u \leq a_{1}<a
$$

Proposition 3. Under the assumptions (9) and (10), if $0 \leq u\left(x, t_{0}\right)$ $<a_{1}, u(x, t)$ tends exponentially to zero when t tends to $+\infty$, in the maximum norm. Before entering into the proof, we remark that the
same discussion in Proposition 2 shows that if $u\left(x, t_{0}\right)<a_{1}, u(x, t)$ remains always less than a_{1} for $t \geq t_{0}$.

Proof. We consider an energy form

$$
E_{1}(t)=\int_{0}^{\infty}\left[\frac{u^{2}}{2}+\frac{u_{x}^{2}}{2}+F(u)\right] d x,
$$

Differentiating with respect to t, we have

$$
\begin{aligned}
E_{1}^{\prime}(t) & =-\int_{0}^{\infty}\left[u_{x}^{2}+u f(u)+u_{\imath}^{2}\right] d x \\
& <-\int_{0}^{\infty}\left[u_{x}^{2}+c_{1}\left(u^{2}+F(u)\right)\right] d x<-c_{2} E_{1}(t), c_{2}>0 .
\end{aligned}
$$

Consequently, we obtain

$$
E_{1}(t) \leq E_{1}\left(t_{0}\right) e^{-c_{2} t}
$$

By the Sobolev's lemma, we conclude that $u(x, t)$ tends exponentially in the sense of uniform maximum norm.

Finally we assume the additional condition:

$$
\begin{cases}f^{\prime}(u)>0 & (u<\alpha), \quad f(u)^{2} \geq c_{0}^{\prime} F(u) \quad(u \leq 0) \tag{11}\\ f^{\prime}(u)<0 & (\alpha<u<\beta), \\ f^{\prime}(u)>0 & (\beta<u),\end{cases}
$$

where $0<\alpha<\beta<b<B$. We denote B the point such that $F(B)=0$, $F(u)>0$ for $u>B$.

Proposition 4. Denoting B_{1} a constant greater than B, and M_{t} the set of $x,(0 \leq x<+\infty)$ such that $u(x, t) \geq B_{1}$, then the measure of the set M_{t} tends exponentially to zero when t tends to $+\infty$ under conditions (9) and (11). Moreover under same condition, the integral $\int_{M_{t}} u^{2}(x, t) d x$ tends also exponentially to 0 when t tends to $+\infty$.

Proof. We can construct a 2 times differentiable function $\Phi(u)$ as follows:

$$
\begin{cases}\Phi(u) \equiv F(u) & u \leq 0 \\ \Phi(u) \equiv 0 & 0 \leq u \leq B_{2} \quad\left(b<B_{2}<B\right) \\ \Phi(u) \equiv X(u) & u \geq B_{2}\end{cases}
$$

where $X(u)$ satisfies following conditions:

$$
\left\{\begin{array}{l}
X^{\prime}(u) \geq \frac{1}{f\left(B_{2}\right)} X(u), X(u)>0, X^{\prime \prime}(u)>0 \text { for } u>B_{2} \tag{12}\\
X^{\prime}\left(B_{2}\right)=X\left(B_{2}\right)=0 \\
\text { there exists a positive constant } c_{3} \text { such that } X(u) \geq c_{3} u^{2} \text { for } u \geq B_{1}
\end{array}\right.
$$

In fact, taking $\varphi(u)$ such that satisfies $\varphi(u), \varphi^{\prime}(u), \varphi^{\prime \prime}(u)>0$ for $u>B_{2} \varphi^{\prime}\left(B_{2}\right)=\varphi\left(B_{2}\right)=0$, and $\varphi(u) \geq c_{4} u^{2}$ for $u \geq B_{1}$, and setting $X(u)=\frac{u}{e f\left(B_{2}\right)} \varphi(u)$ we see $X(u)$ satisfies (12). This means that $\Phi(u)$ satisfies always $\Phi^{\prime}(u) f(u) \geq c_{0}^{\prime} \Phi(u)$.

Now we use the following a new energy form

$$
\begin{equation*}
E_{2}(t)=\int_{0}^{\infty} \Phi(u) d x \tag{13}
\end{equation*}
$$

(the summability of $\Phi(u)$ is evident by the fact that u^{2} and u_{x}^{2} are summable). Differentiating with respect to t, we have

$$
\begin{aligned}
E_{2}^{\prime}(t) & =\int_{0}^{\infty} \Phi^{\prime}(u) u_{t} d x \\
& =-\int_{0}^{\infty} \Phi^{\prime \prime}(u) u_{x}^{2} d x-\int_{0}^{\infty} \Phi^{\prime}(u) f(u) d x
\end{aligned}
$$

By the condition (12) and remarking that $f(u)>f\left(B_{2}\right)$ for $u>B_{2}$, we have

$$
E_{2}^{\prime}(t) \leq-c_{0}^{\prime} E_{2}(t)
$$

That is

$$
E_{2}(t) \leq E_{2}(0) e^{-c_{0}^{\prime} t}
$$

It follows that

$$
c_{4} \int_{M_{t}} u^{2} d x \leq \int_{0}^{\infty} \Phi(u) d x \leq E_{2}(0) e^{-c_{0}^{\prime t}} .
$$

Relating Proposition 3, we mention a remark.
Remark. Considering an another energy form which is not positive definite, we can show the existence of a solution of (3) in the case $g(u) \equiv 0$, which does not tends uniformly to zero when t tends to $+\infty$. In fact, taking

$$
E_{3}(t)=\int_{0}^{\infty}\left[\frac{u_{x}^{2}}{2}+F(u)\right] d x
$$

if $u\left(x, t_{0}\right)$ satisfies

$$
\int_{0}^{\infty}\left[\frac{u_{x}^{2}\left(x, t_{0}\right)}{2}+F\left(u\left(x, t_{0}\right)\right)\right] d x<0, u\left(x, t_{0}\right) \geq 0
$$

then $u(x, t)$ does not tend to zero uniformly; because, if not, for $t>T_{1}$ (sufficiently large)

$$
|u(x, t)|<\varepsilon
$$

for given $\varepsilon<a_{1}<a$, then by the same discussion in Proposition 2, we have

$$
0 \leq u(x, t)<a_{1} .
$$

It signifies that $E_{3}(t)=\int_{0}^{\infty}\left[\frac{u_{x}^{2}}{2}+F(u)\right] d x \geq 0$ by the condition (9).
That is a contradiction because we can show always that

$$
E_{3}^{\prime}(t)=-\int_{0}^{\infty} u_{2}^{2} d x \leq 0 \quad\left(t \geq t_{0}\right) .
$$

References

[1] J. Nagumo, S. Arimoto, and S. Yoshizawa: An active pulse transmission lines simulating nerve axon, Proceedings of the IRE, 50 (10), 2061-2070 (1962).
[2] R. Arima, and Yōjirō Hasegawa: On global solutions for mixed problem of a semilinear differential equation, Proc Japan Acad., 39, 721-725 (1963).

