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160. The Asymptotic Behaviour of the Solution of
a Semi.linear Partial Differential Equation Related

to an Active Pulse Transmission Line

By Masaya YAMAGUTI
(Comm. by Kinjir5 KUNUGI, M.J.A., Dec. 12, 1963)

1. Introduction. J. Nagumo 1 proposed as active pulse trans-
mission line simulating an animal nerve axon. The equation of
propagation of his line is the following:

.. Ou />0,1 u_ u -(1-u+u )--u3t xt x O, t 0
with the boundary data;

u(x, 0)-0 (x_>0)
2 ) u (x, o)-o (x>O)

u(O, t)--@(t) (t_>0), @(t)-----0 for t_> to.
In this note, we consider some asymptotic behaviours of the

solution for the equation of related type with the same boundary
data: Our equation is the following:

3 u u -,, u a(u).
3t 3x.3t

At first, we remark that the existence of global solutions for
this problem (3) with boundary data (2) where (t)eC is assumed
was completely proved by R. Arima and Y. Hasegawa [2 under the
conditions:

--K_f’(u)_Ko(u-+- l),

(4)
I (u) l<_

G(u) {-- g(z)}dz

_
Ku2,

g(u), f’(u) C 1.
Throughout this paper, we always assume that f’(u), g(u) satisfy this
condition (4).

Our results are divided into two parts. The one is the case g(u)-=-u,
the other is the case g(u)O. For the first case, we can prove that
any solution u(x, t) tends uniformly to zero, when t tends to -+-oo,
under the additional condition (5), which corresponds to the limitation

>3 in (1). For the second case we can show the existence of a
16

threshold value for the boundary data (Prop. 3) and a sort of asymp-
totic value under another additional conditions (Prop. 4), (9), (11),
which is independent of (5).

We remark also that the summability in x, of u(x, t) and Ux(X, t),
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which is shown in [2], will play an important role in our proofs.
2. The first case. We assume that g(u)u and we also assume

the following condition (5) (which will be imposed only in this section).
There exists a positive constant c such that

5 uf(u) >_cu where f(u)- f’(z)dz.

Then we have
PROPOSITION 1. For arbitrary given data (t)eC appeared in

(2), the solution of (3) tends uniformly to zero when t tends to
under the condition (5).

PROOF. We transform the equation (3)to a system of equations

by integration with respect to t and putting u(x, r)dr-w(x, t),

6 ) ut--Uxx--f(u)--w

We use the following energy form to obtain an energy inequality,
here we denote by F(u) the primitive function of f(u) taking F(0)--0,

+L + dx,+2+
2 2 2

where kK and L is a positive constant so large that it satisfies
k.c’c. Differentiating (7) with respect to t, and by the inte-

gration by parts, we obtain

U8 E’(t)---- EUx+(f’(u)+k) +(k+L)u+(k+L)uf(u)--ku2dx

0 for tto,
where t0 is a constant such that (t)0 in 0<t<t0 but (t)0 in
tto.

We can conclude from the differential inequality (8), following
facts are finite:

a) E(t) is non-increasing in t for tto.
b) 0 E(t) E(to). Consequently lim E(t) exists.

c) Integrals:

dx, dx, dx, udx are bounded for t>to2 2 2

d) Integrals:
u u

10

---f[--u U]dx’2 we can show (t)O(t+).If we put (t)-- Be-
case,
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i_ly (f’(v)dr f’:"ft[uut+u.Uxt dxdv

Ct t t

By d) above, we ean find a constant T for arbitrary given >0, such
that ](t)--(t’)]< for , t’>T. Then lim () exist and by the

summability we see lim()-0. Consequently we ean prove that

max [u(x, )[0 for +, by the Sobolev’s lemma.
0Kx<+

3. The second case (g(u)0). At first we mention some addi-
tional conditions for this ease:

() { f(u)<0 (u<0), (u)<o (a<u<),
f(u)>O (O<u<a), f(u)>O (b>u),

here a and b are two distinct constants.
Under this condition (9), we can prove a generalized maximum-

minimum principle for the solution of (8) for g(u)-O. That is
PROPOSITION 2. Under the condition (9), if Bo is a constant

gveater than b, then u(x, to)< Bo implies always u(x, t)< Bo for tto,
and u(x, to) 0 implies u(x, t) 0 for t > to.

PaOOF. If there is a point (x, tO where u(x, tO--Bo, then we can
consider the set E of (x, t) t >to, 0 x< + such that u(x, t)-- Bo.
We can prove by the contradiction that there is a positive distance
>0 between the set E and the half straight line t--to 0gx<

if not, there should be a sequence of points (#n, ) which tends to
one point of this half line or + point of this half line, it signifies
that there exists a point (, t0) where u(#, to)-Bo or a sequence of

B0points (, t0) (+) where u(#, t0), by the fact that u(x, t)

is bounded for 0g tg T. (T is some constant t0.) This latter case
contradicts to the fact that u(x, to) and Ux(X, to) are summable in

Therefore we find a point (x, t)where u(x, t)--Bo, u(x, t)<B0
(togt<t, 0gx<+) and u(x, tO<B (x<x). Because u(x, t) is a
solution of (2), (8), u--%--f(u), Uxx(X, t)g0 and f(Bo)--f(u(x,
Consequently u(x, t0<0, this means that there exists a point (x, tz)
(t<t) such that u(x, t)>u(x, tO-Bo. This is a contradiction. The
same argument shows that u(x, to)0 implies u(x, t)O for tto.

We add still one additional assumption:
(10) There exist two positive constants c and a such that

uf(u) c(u +F(u)) for 0 uga< a.
PROPOSITION 3. Under the assumptions (9) and (10), if Og u(x, to)

<a, u(x, t) tends exponentially to zero when t tends to + , in the
maximum norm. Before entering into the proof, we remark that the
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same discussion in Proposition 2 shows that if u(x, to)a, u(x, t)
remains always less than a for t>_to.

PROOF. We consider an energy form

Differentiating with respect to , we have

E;(t) [_Ux+Uf(u) +u dx

<- [Ux+C(u+F(u)) dx<--c.E(t), c.>0.

Consequently, we obtain
E(t)_E(to)e-%

By the Sobolev’s lemma, we conclude that u(x, t)tends exponentially
in the sense of uniform maximum norm.

Finally we assume the additional condition:

f’(u) >0 (u< a), f(u)2_ cF(u) (u O)
(11) f’(u) < 0 (a< u< fl),

f’(u) > 0 (< u),
where 0<a<fl<b<B. We denote B the point such that F(B)--O,
F(u) > 0 for u > B.

PROPOSITION 4. Denoting B1 a constant greater than B, and
Mt the set of x, (0_x< +) such that u(x, t)_B, then the measure
of the set Mt tends exponentially to zero when t tends to + c under
conditions (9) and (11). Moreover under same condition, the integral

fu2(x, t)dx tends also exponentially to 0 when t tends to +.
-tl

PROOF. We can construct a 2 times differentiable function (u)
as follows:

(u)-F(u) u

_
0

(u) 0 0 <__ u

_
B. (b<B< B)

(u)=X(u) u >_ B.
where X(u) satisfies following conditions:

1X’(u) >X(u), X(u) > 0, X"(u) > 0 for
f(B2)(12)

X’(B.)--X(B)--O
there exists a positive constant c such that X(u)>_ cu for u >_ B.

In fact, taking (u) such that satisfies (u), f’(u), "(u)>0
for u>B ’(B)--(B)-O, and (u)>_cu for u>_B, and setting

X(u)--e(.) (u) we see X(u) satisfies (12). This means that (u)
satisfies always ’(u)f(u) >_ c(u).

Now we use the following a new energy form



730 M. YAMAGUTI [Vol. 9,

(13) f(u)dx
(the surnrnability of (u) is evident by the fact that u and u are
summable). Differentiating with respect to t, we have

By the condition (12) and remarking that f(u)>f(B) for u>B, we
have

It follows that

E;(t)<_
That is E.(t) <_ E.(O)e-’o.

c udx<_ (u)dx <_ E(O)e-’t.
Mt

Relating Proposition 3, we mention a remark.
REMARK. Considering an another energy form which is not posi-

tive definite, we can show the existence of a solution of (3) in the
case g(u)-----O, which does not tends uniformly to zero when t tends
to +oo. In fact, taking

if u(x, to) satisfies

| Ux(X, to) + F(u(x, to))|- dx O, u(x, to)>0,
2 _A

then u(x, t) does not tend to zero uniformly; because, if not, for t > T
(sufficiently large)

for given sa< a, then by the same discussion in Proposition 2, we
have

0_ u(x, t)< a.

It signifies that E(t)-- +F(u) dx>_O by the condition (9).

That is a contradiction because we can show always that

E[(t) udx

_
0 (t >_ to).
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