44. On the Theorems of Constantinescu-Cornea

By Teruo Ikegami

University of Osaka Prefecture (Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1964)

1. Let f be a non-constant analytic mapping from a hyperbolic Riemann surface R into an arbitrary Riemann surface R'. C. Constantinescu and A. Cornea defined¹⁾ a cluster set and developed the theorem of Riesz and the theorem of Fatou. Their cluster set is defined by means of the operator I and the argument is carried out mechanically. We shall give here an intuitive interpretation of this cluster set by the notion of thinness due to L. Naïm.²⁾

2. We can define the Martin boundary Δ of R, and the set of minimal boundary points Δ_1 .³⁰ For $s \in \Delta_1$ and an open subset G in R Constantinescu-Cornea defined

 $I\!K_s = \sup\{u(p); u \in HP(\eta), u \leq K_s \text{ in } G\},\$

where K_s is the minimal positive harmonic function in R corresponding to s and η is an identity mapping from G into R. By definition, $u \in HP(\eta)$ if and only if for every relatively compact open set $G_1 \subseteq R$, $H_u^{G \cap G_1} = u$ in $G \cap G_1$ where $H_u^{G \cap G_1}$ denotes the solution of the Dirichlet problem with the boundary function u on $\partial(G \cap G_1) \cap G^4$ and 0 else where. Further, if $IK_s \equiv 0$ they set $s \in \mathcal{A}_1(G)$ and the cluster set is defined as follows:

$$\widehat{M}_{f}(s) = \bigcap_{s \in J_{1}(G)} \overline{f(G)},$$

 $\overline{f(G)}$ is the closure of f(G) in \widehat{R}' (compactification of R').⁵⁾

We shall here remark that the set $\Delta_1(G)$ permits the potential theoretic view. In fact, Constantinescu-Cornea showed that the following equality holds in G:

$$IK_{s} = K_{s} - H_{K_{s}}^{G}$$

2) L. Naïm: Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel. Ann. Inst. Fourier, 7, 183-281 (1957).

¹⁾ C. Constantinescu and A. Cornea: Über das Verhalten der analytischen Abbildungen Riemannscher Flächen auf dem idealen Rand von Martin. Nagoya Math. J., **17**, 1–87 (1960).

³⁾ For the construction and the properties of the Martin boundary see L. Naïm, l.c., also M. Parreau: Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann. Ann. Inst. Fourier, **3**, 103-197 (1952). R. S. Martin: Minimal positive harmonic functions. Trans. Amer. Math. Soc., **49**, 137-172 (1941).

⁴⁾ $\partial(G \cap G_1)$ denotes the boundary of $G \cap G_1$.

⁵⁾ Cf. Constantinescu-Cornea, l.c., S. 44.

⁶⁾ Cf. Constantinescu-Cornea, l.c., Hilfssatz 4, S. 21.

On the other hand, L. Naïm defined the thinness of a set at the minimal boundary point and gave the criterion:⁷⁾ "the set $F \subseteq R$ is thin at $s \in \mathcal{A}_1$ if and only if $\mathcal{C}_{K_s}^{R-F} \equiv K_s$, where $\mathcal{C}_{K_s}^{R-F}$ denotes the extremization of K_s on R-F".⁸⁾ If R-F is open then $\mathcal{C}_{K_s}^{R-F} = H_{K_s}^{R-F}$ in R-F. Hence we can get the relation: $s \in \mathcal{A}_1(G)$ implies that the set R-G is thin at s and vice versa.

From this point of view some properties of $\Delta_1(G)$ are easily seen, for example, $\Delta_1(G_1) \cap \Delta_1(G_2) = \Delta_1(G_1 \cap G_2)$ is verified as follows: if Fis thin at s and $F_2 \subset F_1$ then F_2 is also thin at s, therefore

$$\varDelta_1(G_1) \cap \varDelta_1(G_2) \supset \varDelta_1(G_1 \cap G_2).$$

On the other hand, if F_1 and F_2 are thin at s then $F_1 \cup F_2$ is thin at s, therefore

$$\varDelta_1(G_1) \cap \varDelta_1(G_2) \subset \varDelta_1(G_1 \cap G_2).$$

3. Next, we shall give a proof of the theorem of Riesz from our point of view.

Lemma. If u is a positive harmonic function in R and

$$u(p) = \int K_s(p) d\mu(s)$$

and F is a set of $\mathcal{F}_s^{(9)}$ in R then
 $\mathcal{E}_u^F(p) = \int \mathcal{E}_{K_s}^F(p) d\mu(s).$

Proof. It is known that $\mathcal{E}_{u}^{F}(p) = \int u(q)d \,\epsilon'_{p}(q)$ where $d \,\epsilon'_{p}$ denotes the mass-distribution defined by sweeping out the unit mass at p on F. For $(q, s) \in F \times \mathcal{A}_{1}$, $K_{s}(q)$ is a positive measurable function in (q, s) we can adapt the Fubini's theorem:

$$\begin{split} \mathcal{E}_{u}^{F}(p) &= \int u(q) d \, \epsilon_{p}'(q) = \int \left[\int_{a_{1}} K_{s}(q) d \, \mu(s) \right] d \, \epsilon_{p}'(q) \\ &= \int_{a_{1}} \left[\int_{a_{1}} K_{s}(q) d \, \epsilon_{p}'(q) \right] d \, \mu(s) \\ &= \int_{a_{1}} \mathcal{E}_{K_{s}}^{F}(p) \, d \, \mu(s). \end{split}$$

Before stating the theorem of Riesz, we shall define some notions. Let us assume that R' is also hyperbolic, then we can construct the Martin space $\hat{R}'^{(10)}$. The set \hat{A}' in \hat{R}' is polar if there exists a positive superharmonic function S' such that

$$\lim_{\substack{p' \to \hat{q}' \\ canonical}} S'(p') = +\infty \text{ holds for each } \hat{q}' \in \hat{A}'.$$
canonical representation of 1:

$$1 \equiv \int K dx(s)$$

The

⁷⁾ Cf. L. Naïm, l.c., p. 201 and théorème 5, p. 205.

⁸⁾ Cf. L. Naïm, l.c., p. 192.

⁹⁾ The set of \mathcal{F}_{σ} is defined as the set which is a union of countable closed sets.

¹⁰⁾ Cf. L. Naïm, l.c., p. 192.

gives the mass-distribution $\chi^{.11}$. Let A be the Borel subset of Δ , if $\chi(A)=0$ then we shall say that A is of harmonic measure zero.

Theorem of Riesz. Let \hat{A}' be a polar set on \hat{R}' . For some set $A \subset \mathcal{A}_1$, if the relation $\hat{M}_f(s) \subset \hat{A}'$ holds for every $s \in A$, then A is of harmonic measure zero.

Proof. Let S' be a positive superharmonic function on R' such that $S'(f(p_0)) \approx +\infty^{12}$

and

We write for each
$$a > 0$$

 $G'_{\alpha} = \{p' \in R'; S'(p') > \alpha\}$
 $G_{\alpha} = f^{-1}(G'_{\alpha}).$

Let s belong to A then for every $\alpha > 0$ there exists an $\varepsilon > 0$ such that $G'(\hat{M}_{f}(s), \varepsilon) \subset G'_{\alpha}$, where $G'(\hat{M}_{f}(s), \varepsilon)$ denotes the intersection of R' and the ε -neighbourhood of $\hat{M}_{f}(s)$ in the Martin space \hat{R}' , then $s \in \Delta_{1}(f^{-1}(G'(\hat{M}_{f}, \varepsilon))) \subset \Delta_{1}(G_{\alpha})$ therefore we shall have for every $\alpha > 0$, $A \subset \Delta_{1}(G_{\alpha})$. If we show that $\lim_{\alpha \to +\infty} \chi(\Delta_{1}(G_{\alpha}))=0$, then we shall get A is of harmonic measure zero. The proof of $\lim_{\alpha \to +\infty} \chi(\Delta_{1}(G_{\alpha}))=0$ is as follows: we shall write S(p)=S'(f(p)), then S is a positive super-harmonic function on R, and

$$\frac{1}{\alpha}S>1$$
 on G_{α}

therefore

$$\frac{1}{\alpha}S \geq \mathcal{E}_1^{R-G_\alpha} \quad \text{in } R.$$

From $1 = \int_{A_1} K_s d\chi(s)$ and the preceding lemma $\mathcal{E}_1^{R-G_{\alpha}} = \int_{A_1} \mathcal{E}_{K_s}^{R-G_{\alpha}} d\chi(s) = \int_{A_1(G_{\alpha})} \mathcal{E}_{K_s}^{R-G_{\alpha}} d\chi(s) + \int_{A_1-A_1(G_{\alpha})} \mathcal{E}_{K_s}^{R-G_{\alpha}} d\chi(s).$

For $s \in \mathcal{J}_1(G)$, $R - G_{\alpha}$ is thin at s and R is not thin at s therefore G_{α} is not thin at s hence $\mathcal{C}_{K_s}^{R-G_{\alpha}} \equiv K_s$. Hence

$$\frac{1}{\alpha} S(p) \geq \mathcal{C}_{1}^{R-G_{\alpha}}(p) \geq \int_{\mathcal{A}_{1}(G_{\alpha})} K_{s}(p) d\chi(s).$$

For $p = p_0$ we get $\frac{1}{\alpha}S(p_0) \ge \chi(\mathcal{A}_1(G_\alpha))$ and $\alpha \to +\infty$ we get the desired result.

4. Constantinescu-Cornea showed that for an open set $G \subseteq R$,

11) Cf. L. Naïm, l.c., p. 193.

¹²⁾ p_0 is the point of normalization for Martin's kernel $K_s(p)$ — that is for p, q in R and for Green function of R, g(p, q), $K_q(p) = \frac{g(p, q)}{g(p_0, q)}$.

No. 3]

and for a positive harmonic function $u(p) = \int_{a_1} K_s(p) d\mu(s)$,

As in the preceding proof we can see

$$EIu = \int_{a_{(G)}} K_s d\mu(s).^{13}$$

$$EIu \leq \mathcal{C}_u^{R-G} \leq u.$$

Theorem 1. Let $R \in U^{(4)}$ and G be an open set. Then if one of the components of G belongs to the class U then

$$\mathcal{E}_{1}^{G} \equiv 1$$
,

and if $\Delta - \Delta_1(G)$ is of harmonic measure zero then at least one components of G belongs to $U^{.15}$.

Proof. Let R_0 be a component of G such that $R_0 \in U$ and u_0 be a bounded minimal positive harmonic function in R_0 , then we can form

 $u = \inf\{v; v \text{ is a non-negative superharmonic function in } R \text{ and } v \ge u_0 \text{ in } R_0\}$

 \hat{u} , the regularization of u, is bounded minimal in R. Therefore $\hat{u} = \lambda K_{s_0}, s_0 \in \mathcal{A}_1$, but in this case we can show that $s_0 \in \mathcal{A}_1(G)$. Now we shall assume that $\mathcal{C}_1^G \equiv 1$. This implies that $\chi(\{s; s \in \mathcal{A}_1, K_s \notin \mathcal{C}_{K_s}^G\}) = 0$ and this leads to a contradiction since $K_{s_0} \notin \mathcal{C}_{K_{s_0}}^G$ and $\chi(\{s_0\}) > 0$. Next, if $\chi(\mathcal{A} - \mathcal{A}_1(G)) = 0$ then $\int_{\mathcal{A}_1(G)} K_s d\chi(s) \equiv 1$. Let K_{s_0} be a bounded minimal positive harmonic function in R, then $\chi(\{s_0\}) > 0$, therefore $s_0 \in \mathcal{A}_1(G)$ and $u_0 = K_0 - \mathcal{C}_{K_0}^G$

 $u_0 \!=\! K_{s_0} \!-\! \mathcal{C}^{\scriptscriptstyle G}_{{\scriptscriptstyle K} s_0}$ is a bounded minimal positive harmonic function in some component of G.

Remark. For an open set G we have

$$\Delta_1 = \Delta_1(G) \cup \Delta_1(R - \overline{G}) \cup A$$

where $A = \varDelta_1 - [\varDelta_1(G) \bigcup \varDelta_1(R - \overline{G})]$ and these three sets are mutually disjoint. The necessary condition of the above theorem means that $\chi(\varDelta_1(G)) \neq 0$ and the sufficient condition means that $\chi(\varDelta_1(G))=1$. More precise condition is required. We shall remark that if $\chi(A)=0$, for instance if the relative boundary of G is compact, the two conditions $EI_1 \equiv 1$ and $\mathcal{C}_1^{R-G} \equiv 1$ are equivalent and we shall get:

Theorem 2. Let $R \in U$ and G be an open set of which relative boundary is compact. If $\mathcal{C}_1^{R-G} \equiv 1$ then at least one of the components of G belongs to U.

¹³⁾ Cf. Constantinescu-Cornea, l.c., Satz 15', S. 42.

¹⁴⁾ A Riemann surface $R \notin O_G$ belongs to the class U if R has at least one bounded minimal positive harmonic function.

¹⁵⁾ The hypothesis of the latter part means that $EII \equiv 1$. Cf. Constantinescu-Cornea, l.c., Folgesatz 7, S. 70.