37. On Completeness of Royden's Algebra

By Michihiko KAWAMURA

Department of Mathematics, Shimane University (Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1964)

Let R be a Riemann surface and M(R) be Royden's algebra associated with R, i.e. the totality of bounded continuous a.c.T. functions^{*)} on R with finite Dirichlet integrals. We say that a sequence $\{\varphi_n\}$ of functions in M(R) converges to a function φ in C-topology if it converges uniformly on any compact subset of R. If a sequence $\{\varphi_n\}$ is bounded and converges to φ in C-topology, then we say that $\{\varphi_n\}$ converges to φ in *B*-topology. If the Dirichlet integral $\iint_{p} d(\varphi_n - \varphi) \wedge *\overline{d(\varphi_n - \varphi)}$ tends to zero, then we say that $\{\varphi_n\}$ converges to φ in *D*-topology. Finally a sequence $\{\varphi_n\}$ converges to φ in *BD*-topology, if it converges in *B*-topology and *D*-topology. Let $M_0(R)$ be the totality of functions in M(R) with compact supports in R and $M_{A}(R)$ be the potential subalgebra of M(R), i.e. the closure of $M_0(R)$ in BD-topology. Let $\Gamma(R)$ be the totality of differentials α of the first order on R with finite Dirichlet integrals. Then $\Gamma(R)$ is a Hilbert space with an inner product $(\alpha, \beta) = \iint \alpha \wedge {}^*\bar{\beta}$. Clearly $\{df; f \in M(R)\} \subset \Gamma(R)$. The algebras M(R) and $M_{A}(R)$ are complete with respect to BD-topology respectively. (cf. Lemma 1.5, p. 208 in Nakai $\lceil 3 \rceil$). Moreover we have the following theorem.

Theorem 1. If $\varphi_n \in M(R)$ and if (1) $\varphi_n \to \varphi$ in C-topology and φ is bounded, (2) the Dirichlet integral $D_R(\varphi_n)$ is bounded, then (3) $\varphi \in M(R)$, (4) $d\varphi_n \to d\varphi$ weakly in $\Gamma(R)$.

Proof. Generally, a bounded subset of a Hilbert space is weakly compact (cf. ch. 1, § 4 in Nagy [2]). Since $\{d\varphi_n\}$ is bounded in $\Gamma(R)$ by condition (2), there exists a subsequence $\{d\varphi_{n_k}\}$ such that $\{d\varphi_{n_k}\}$ converges to some $\alpha \in \Gamma(R)$ weakly in $\Gamma(R)$. We shall show that $\varphi \in M(R)$ and $d\varphi = \alpha$. Let z = x + iy be a local parameter in R and let G be a square domain: -1 < x < 1, -1 < y < 1 in the coordinate neighborhood of z. We put $\alpha = \alpha(x, y)dx + b(x, y)dy$ in G and we take a differential β such that $\beta = \overline{\phi}dy$ in G and $\beta = 0$ outside of G, where ϕ is in the class C^{∞} and its support is contained in G. Then we have

$$(\alpha,\beta) = \iint \alpha \wedge {}^*\overline{\beta} = \iint_G a\phi dx dy.$$

By integration by parts, we get

^{*)} For the definition of a.c.T. functions, refer to A. Pfluger: Comment. Math. Helvt., **33**, 23-33 (1959).

On the other hand

$$\lim_{k} (d\varphi_{n_{k}}, \beta) = (\alpha, \beta).$$

Therefore

$$\int_{G} \int a\phi dx dy = (\alpha, \beta) = \lim_{k} (d\varphi_{n_{k}}, \beta) = -\lim_{k} \int_{G} \int \varphi_{n_{k}} \frac{\partial \phi}{\partial x} dx dy$$

Since $\{\varphi_{n_k}\}$ converges to φ uniformly in *G*, the last term of the above is equal to $-\int_{-\infty}^{\infty} \varphi \frac{\partial \phi}{\partial x} dx dy$. Hence

$$\int_{G} \int a\phi dx dy = -\int_{G} \int \phi \frac{\partial \phi}{\partial x} dx dy.$$

The above equality holds for any function ϕ which is in the class C^{∞} and its support is contained in G. Hence the partial derivative $\frac{\partial \varphi}{\partial x}$ of φ in the sense of the theory of distributions is equal to a measurable function a(x, y). By Nikodym's theorem (cf. Theorem 5, p. 58 in Schwartz [8]), $\varphi(x, y)$ is absolutely continuous with respect to x in -1 < x < 1 for almost all values of fixed y in -1 < y < 1 and the partial derivative $\frac{\partial \varphi}{\partial x}$ in the usual sense is equal to a(x, y) for almost all values of (x, y) in G. Similarly, $\varphi(x, y)$ is absolutely continuous with respect to y in -1 < y < 1 for almost all values of fixed x in -1 < x < 1 and $\frac{\partial \varphi}{\partial y}$ is equal to b(x, y) for almost all values of (x, y) in G. Since $\varphi(x, y)$ is continuous and a(x, y) and b(x, y) are locally square integrable, a(x, y) and b(x, y) and so $\frac{\partial \varphi}{\partial x}$ and $\frac{\partial \varphi}{\partial y}$ are all locally integrable. Hence φ is an a.c.T. function. On the other hand, $d\varphi = \alpha \in \Gamma(R)$, i.e. $D_R(\varphi) < +\infty$. By condition (1), φ is bounded and continuous. Hence $\varphi \in M(R)$. Next, any subsequence of $\{d\varphi_n\}$ contains a subsequence which converges weakly in $\Gamma(R)$. From the above proof, this subsequence converges to $d\varphi$ weakly in $\Gamma(R)$. Hence $\{d\varphi_n\}$ itself converges to $d\varphi$ weakly in $\Gamma(R)$.

Corollary 1. M(R) is a normed ring with respect to the norm $||f|| = \sup |f| + \sqrt{D_R(f)}$ (Lemma 1.1, p. 203 in Nakai [3]).

Corollary 2. M(R) is complete with respect to the BD-topology (Lemma 1.5, p. 208 in Nakai [3]).

Theorem 2. If $\varphi_n \in M_{\mathcal{A}}(R)$ and if (1) $\varphi_n \to \varphi$ in C-topology and φ is bounded, (2) $D_R(\varphi_n)$ is bounded, then (3) $\varphi \in M_{\mathcal{A}}(R)$.

Proof. By Theorem 1, $\varphi \in M(R)$. Let $\{R_m\}_{m=0}^{\infty}$ be a normal exhaustion of R such that $R_1 - \overline{R}_0$ is an annulus. Let w(p) be a continuous function on R such that w(p)=0 on \overline{R}_0 , w(p) is harmonic on $R_1 - \overline{R}_0$ and w(p)=1 on $R - R_1$. Since

No. 3]

M. KAWAMURA

 $\varphi = w\varphi + (1 - w)\varphi$

and clearly

$$(1-w)\varphi \in \boldsymbol{M}_0(R) \subset \boldsymbol{M}_A(R),$$

it is sufficient to prove that $w\varphi \in M_d(R)$. Let u_m be a continuous function such that $u_m = 0$ on \overline{R}_0 and u_m is harmonic on $R_m - \overline{R}_0$ and $u_m = \psi$ on $R - R_m$, where $\psi = w\varphi$. Then $u_m - u_{m+p}$ is equal to zero outside of $R_{m+p} - \overline{R}_0$ and u_{m+p} is harmonic in $R_{m+p} - \overline{R}_0$. By Green's formula

$$D_{R}(u_{m}-u_{m+p}, u_{m+p}) = \int_{\mathfrak{d}(R_{m+p}-R_{\mathfrak{d}})} (u_{m}-u_{m+p})^{*} du_{m+p} = 0.$$

Hence

$$0 = D_R(u_m - u_{m+p}, u_{m+p}) = D_R(u_m, u_{m+p}) - D_R(u_{m+p}),$$

so we get

$$D_R(u_m-u_{m+p})=D_R(u_m)-D_R(u_{m+p}).$$

Since

 $D_{R}(u_{m}) \geq D_{R}(u_{m+p}) \geq 0,$

 $\{D_{\scriptscriptstyle R}(u_{\scriptscriptstyle m})\}$ converges and

 $D_R(u_m-u_{m+p}) \rightarrow 0$ as $m \rightarrow \infty$.

On the other hand $\{u_m\}$ is bounded and u_m is harmonic on $R_m - \bar{R}_0$ and is equal to zero on \bar{R}_0 . Hence $\{u_m\}$ converges together with its derivatives to a function u uniformly on every compact subset of R, where u is harmonic in $R - \bar{R}_0$ and is equal to zero on \bar{R}_0 . Hence $u_m \rightarrow u$ in *BD*-topology.

Now we put

 $f = \psi - u$

and

$$f_m = \psi - u_m$$

Clearly $\{f_m\}$ converges to f in *BD*-topology and hence $f \in M_A(R)$. By Green's formula,

 $D_R(u, f_m) = 0.$ From *BD*-convergence of $\{f_m\}$, we have (5) $D_R(u, f) = 0.$ Next we put

$$\psi_n = w \varphi_n.$$

Since $\varphi_n \in M_{\mathcal{A}}(R)$, there exists a sequence $\{\phi_{n,i}\}$ such that $\phi_{n,i} \in M_0(R)$ and $\{\phi_{n,i}\}$ converges to φ_n in *BD*-topology for fixed *n*, as $i \to \infty$. By Green's formula

$$D_R(u, w\phi_{n,i})=0,$$

since $w\phi_{n,i} \in M_0(R)$. Clearly the sequence $\{w\phi_{n,i}\}$ converges to $w\varphi_n$ in *BD*-topology, hence we have $\psi_n \in M_d(R)$ and $D_R(u, \psi_n) = 0$.

The sequence $\{\psi_n\}$ and the function ψ satisfy the conditions in

168

Theorem 1. In fact, the condition (1) is clearly satisfied. For the condition (2), we note that $\{\varphi_n\}$ converges uniformly on R_1 . Therefore we can assume $|\varphi_n| < M < +\infty$ on R_1 , and we have the following inequality:

 $D_{R}(w\varphi_{n}) \leq D_{R}(\varphi_{n}) + 2M\sqrt{D_{R}(w)D_{R}(\varphi_{n})} + M^{2}D_{R}(w).$

This shows that the sequence $\{D_R(\psi_n)\}$ is bounded. By Theorem 1, $\{d\psi_n\}$ converges to $d\psi$ weakly in $\Gamma(R)$. Thus we have (6) $D_R(u, \psi)=0.$

From the equality

$$D_R(u, \psi) = D_R(u, u) + D_R(u, f)$$

and (5), (6), we have

 $D_R(u, u) = 0.$

Hence u is equal to a constant. Since u=0 on R_0 , u=0 on R. Thus $\psi=f\in M_d(R)$.

Remark: Theorem 2 is an extension of Proposition 10 in Royden [7] and Lemma 1.4.1 in Nakai [5].

Corollary. $M_{A}(R)$ is complete with respect to BD-topology.

Application: Let $\{G(z, w_n)\}$ be a sequence of Green's functions with poles w_n in R. Suppose that $\{w_n\}$ is a divergent sequence of points in R and that $\{G(z, w_n)\}$ converges to a harmonic function h(z) uniformly on every compact subset in R. Then h(z) is singular in the sense of Parreau [6] (Kuramochi [1]).

Proof. The following equality is well known:

 $D_{R}(\min[G(z, w_{n}), c]) = 2\pi c$

for any positive number c. Clearly

 $\min[G(z, w_n), c] \in \boldsymbol{M}_{\mathcal{A}}(R)$

and

 $\min[G(z, w_n), c] \rightarrow \min[h(z), c]$ in *B*-topology.

Hence by Theorem 2

$$\min[h(z), c] \in \boldsymbol{M}_{\mathcal{A}}(R),$$

therefore

 $\lim_{R \ni z \to p} (\min[h(z), c]) = 0 \quad \text{for any point } p \in \mathcal{A},$

where Δ is the harmonic boundary of R (cf. p. 185 in Nakai [4]). Let u(z) be the greatest harmonic minorant of h(z) and c. We have $0 = \lim_{x \to 0} \sup (\min[h(z), c]) > \lim_{x \to 0} \sup u(z) > 0$

 $0 = \lim_{R \ni z \to p} \sup (\min[h(z), c]) \ge \lim_{R \ni z \to p} \sup u(z) \ge 0$ for any point $p \in \mathcal{A}$. By the maximum principle (Theorem 1.2, Corollary (a) p. 192 in Nakai [4]), u(z) = 0 on R. Hence h(z) is singular.

References

- Z. Kuramochi: On harmonic functions representable by Poisson's integral. Osaka Math. J., 10, 103-118 (1958).
- [2] B. Sz. Nagy: Spektraldarstellung linearer Transformationen des Hilbertschen Raumes. Berlin (1941).

M. KAWAMURA

- [3] M. Nakai: On a ring isomorphism induced by quasiconformal mappings. Nagoya Math. J., 14, 201-221 (1959).
- [4] ——: A measure on the harmonic boundary of a Riemann surface. Nagoya Math. J., 17, 181-218 (1960).
- [5] ——: Green potential of Evans type on Royden's compactification of a Riemann surface, to apear in Nagoya Math. J.
- [6] M. Parreau: Sur les moyennes de fonctions harmoniques et analytiques et la classification des surfaces de Riemann. Ann. Inst. Fourier, **3**, 103-197 (1951).
- [7] H. L. Royden: Harmonic functions on open Riemann surface. Trans. Amer. Math. Soc., 73, 40-94 (1952).
- [8] L. Schwartz: Théorie des Distributions. Hermann, Paris, 1 (1950).