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37. On Completeness of Royden’s Algebra
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Department of Mathematics, Shimane University

(Comm. by Kinjir6 KUNUGI, M.ff.A., March 12, 1964)

Let R be a Riemann surface and M(R) be Royden’s algebra
associated with R, i.e. the totality of bounded continuous a.c.T.
functions* on R with finite Dirichlet integrals. We say that a
sequence {gn} of functions in M(R) converges to a function 9 in
C-topology if it converges uniformly on any compact subset of R.
If a sequence {9} is bounded and converges to 9 in C-topology, then
we say that {9} converges to 9 in B-topology. If the Dirichlet

integral Ild(9n--9)A*d(9--9) tends to zero, then we say that {gn}

converges to 9 in D-topology. Finally a sequence [gn} converges to
9 in BD-topology, if it converges in B-topology and D-topology. Let
Mo(R) be the, totality of functions in M(R) with compact supports
in R and M(R) be the potential subalgebra of M(R), i.e. the closure
of Mo(R) in BD-topology. Let F(R) be the totality of differentials
a of the first order on R with finite Dirichlet integrals. Then F(R)
is a Hilbert space with an inner product (a, fl)=l]-aA*. Clearly

{df; fM(R)}F(R). The algebras M(R) and M(R) are complete
with respect to BD-topology respectively. (cf. Lemma 1.5, p. 208 in
Nakai 3). Moreover we have the following theorem.

Theorem 1. If M(R) and if (1) - in C-topology and
is bounded, (2) the Dirichlet integral D(gn) is bounded, then (3)
9eM(R), (4) dgd9 weakly in F(R).

Proof. Generally, a bounded subset of a Hilbert space is weakly
compact (cf. ch. 1, 4 in Nagy [2). Since {dgn} is bounded in F(R)
by condition (2), there exists a subsequence {d} such that {d}
converges to some a eF(R) weakly in F(R). We shall show that
eM(R) and dg- a. Let z-- x+iy be a local parameter in R and let

G be a square domain" 1 < x< 1, 1 < y< 1 in the coordinate neigh-
borhood of z. We put a-a(x, y)dx+b(x, y)dy in G and we take a

differential fl such that fl--dy in G and fl-0 outside of G, where
is in the class C and its support is contained in G. Then we have

=,?f -:ff(a, fl) aA * fl aCdxdy.
G

By integration by parts, we get
*) For the definition of a.c.T, functions, refer to A. Pfluger: Comment. Math.

Helvt., 33, 23-33 (1959).
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3 dxdy.(dgnlc, f f -ff\ x
On the other hand

lira (d,, )-(a., ).
Therefore

ff O dxdy.aOdxdy--(a, fl)--li (dn, fl)- limflfl
Since [n] converges to uniformly in G, the last term o the above

is equal to fldxdy. Hence
J J 3x

G G

he above equality holds for any funetion which is in the class
C and its support is eontaine in G. Hence the artial derivative

-of in the sense of the theory of distributions is equal to a

measurable function a(, ). By Nikodym’s theorem (el. heorem g,. g8 in Sehwart [8}), (z, ) is absolutely continuous with respect
to in --1<<1 for almost all values of fixed in --1<<1 and

the artial derivative in the usual sense is equal to a(, ) for

almost all values of (,g) in G. Similarly, (, ) is absolutely
continuous with respect to g in --l<g<l for almost all values of

fixed in -l<<land 0 is equal to b( ) for almost all valuesN
of (, ) in G. Since (, ) is continuous and a(, ) and b(, ) are

09 and 39locally square integrable, a(x, y) and b(, y) and so are

all locally integrable. Hence 9 is an a.c.T, function. On the other
hand, dg-F(R), i.e. D(9)<+. By condition (1), 9 is bounded
and continuous. Hence 9eM(R). Next, any subsequence of [dg}
contains a subsequence which converges weakly in F(R). From the
above proof, this subsequence converges to d9 weakly in F(R). Hence
{dgn} itself converges to d9 weakly in F(R).

Corollary 1. M(R) is a normed ring wih respec o he norm
Itflt-suplfl+D(f) (Lemma 1.1, p. 203 in Nakai 3).

Corollary 2. M(R) is complete wish respec o he BD-topology
(Lemma 1.5, p. 208 in Nakai 3).

Theorem 2. If 9eM(R) and if (1) 9 in C4opology and
9 is bounded, (2) D(gn) is bounded, ,hen (3) 9eM(R).

RProof. By Theorem 1 9eM(R). Let { }=0 be a normal ex-

haustion of R such that R--Ro is an annulus. Let w(p) be a con-

tinuous function on R such that w(p)-O on Ro, w(p) is harmonic

on R--0 and w(p)- 1 on R-R. Since
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--W+(1--W)
and clearly

(1--w) eMo(R)CMA(R),
it is sufficient to prove that weM(R). Let u be a continuous

function such that u--0 on Ro and u is harmonic on R--Ro and
u= on R--R,, where --w(?. Then u,--u,/p is equal to zero

outside of R+p--R0 and u/ is harmonic in R/--R0. By Green’s
formula

D(u,--u+, u,/)-- f (u.--u.+p)*du,+-O.

Hence

so we get

Since

O--D(u--u+, u+)--D_(u., u+)--Dz(u/),

D.(u.--u./p)=D(u)--D.(u.+ ,).

D(u,)>_D(u,+)>_O,
{DR(u)} converges and

D(u,--u/)O as m-->.

On the other hand {u} is bounded and u is harmonic on R,--Ro
and is equal to zero on Ro. Hence {u} converges together with its
derivatives to a function u uniformly on every compact subset of

R, where u is harmonic in R--Ro and is equal to zero on R0. Hence
u.-u in BD-topology.

Now we put
f----u

and
fm---f --Um.

Clearly {f} converges to f in BD-topology and hence feM,(R). By
Green’s formula,

nR(u, f) O.
From BD-convergence of [f}, we have
( 5 DR(u, f)--0.
Next we put

n--W.
Since eMA(R), there exists a sequence {0.} such that n.eMo(R)
and {0.] converges to in BD-topology for fixed n, as i-->. By
Green’s formula

DR(u, w.) 0,
since wO,.Mo(R). Clearly the sequence {WOn.} converges to Wn in
BD-topology, hence we have eM(R) and

n.(u, n) 0.
The sequence {n} and the function satisfy the conditions in
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Theorem 1. In fact, the condition (1) is clearly satisfied. For the
condition (2), we note that {9} converges uniformly on R. There-
fore we can assume ]9I<M< +o on R, and we have the following
inequality:

D(w) D()+2MD(w)D(n)+MD(w).
This shows that the sequence {D()} is boundecl. By Theorem 1,
[drn} converges to d weakly in F(R). Thus we have
( 6 D(u, ) 0.
From the equality

D(u, ) D(u, u) +D(u, f)
and (5), (6), we have

D(u, u) 0.
Hence u is equal to a constant. Since u-0 on R0, u--0 on R.
Thus :fM(R).

Remark: Theorem 2 is an extension of Proposition 10 in Royden
[7 and Lemma 1.4.1 in Nakai

Corollar. M(R) is complete with respect to BD-topology.
Application: Let [G(z, Wn)} be a sequence of Green’s iunctions

with poles w in R. Suppose that {w] is a divergent sequence of
points in R and that [G(z, Wn)} converges to a harmonic function
h(z) uniformly on every compact subset in R. Then h(z)is singular
in the sense of Parreau 6 (Kuramochi 1).

Proof. The following equality is well known:
DR(min[G(z, ’Wn) c_)=2c

for any positive number c. Clearly
min[G(z, w,), c Mz(R)

and
min[G(z, Wn), cmin[h(z), c_ in B-topology.

Hence by Theorem 2
min[h(z), c M(R),

therefore
lim (min[h(z), c])=0 for any point

where is the harmonic boundary of R (cf. p. 185 in Nakai [4).
Let u(z) be the greatest harmonic minorant of h(z) and c. We have

0-- lim sup (min[h(z), c)_> lim sup u(z)>_O
for any point p 2. By the maximum principle (Theorem 1.2, Corollary
(a) p. 192 in Nakai [4), u(z)=O on R. Hence h(z) is singular.
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