By Nobuo KIMURA

Hokkaido Gakugei University

(Comm. by Kinjirô Kunugi, M.J.A., April 13, 1964)

Let X and Y be normal spaces. As for the covering dimension of the product space $X \times Y$ we have known several cases for which the following relation

(A) $\dim (X \times Y) \leq \dim X + \dim Y$ holds.

Especially when Y is a separable metrizable space, (A) has been proved in each of the following cases.

(a) X is metrizable ([2]).

(b) X is countably paracompact and normal, and Y is locally compact ([2]).

In the present paper we shall prove (A) under the conditions that Y is separable metrizable and $X \times Y$ is countably paracompact and normal.

Recently E. Michael [1] has given a non-normal space $X \times Y$ which is a product space of a hereditarily paracompact normal space X with a separable metric space Y. This space $X \times Y$ is not 0dimensional, nevertheless X and Y are 0-dimensional; thus (A) does not hold.

Accordingly the normality of $X \times Y$ is indispensable.

The idea of the proof for our theorem is based on the "basic coverings" introduced by K. Morita ([3]).

1. Henceforth Y always means a separable metrizable space.

Lemma 1. Suppose that dim Y=n and let s be an arbitrary positive integer: then there are locally finite countable coverings

 $\mathfrak{V}_{i}^{(l)} = \{ V_{i\alpha}^{(l)} | \alpha = 1, 2, \cdots \} \ (1 \leq l \leq s; \ i = 1, 2, \cdots)$

satisfying the following conditions (i) and (ii).

(i) $\bigcup \mathfrak{V}_i^{(2)}$ is an open basis of Y for any $l(1 \leq l \leq s)$.

(ii) The order of the family $\{\mathfrak{B}V_{i\alpha}^{(l)} | i, \alpha = 1, 2, \dots; 1 \leq l \leq s\}$ is at most n. (Here $\mathfrak{B}V_{i\alpha}^{(l)}$ means $\overline{V_{i\alpha}^{(l)}} - \overline{V_{i\alpha}^{(l)}}$.)

Proof. The existence of $\mathfrak{B}_{i}^{(i)}$ satisfying (i) is well known (e.g. [3]), and these may be considered as countable coverings for any i and l, according to separability of Y. Moreover, the existence of such $\mathfrak{B}_{i}^{(i)}$ that satisfy (ii) is assured by the shrinkability of the covering $\mathfrak{B}_{i}^{(i)}$ and [4].

Put
$$W^{(l)}(\alpha_1, \alpha_2, \cdots, \alpha_i) = V^{(l)}_{1\alpha_1} \cap V^{(l)}_{2\alpha_2} \cap \cdots \cap V^{(l)}_{i\alpha_i}$$

Lemma 2. Let $(\alpha_1, \dots, \alpha_i), (\beta_1, \dots, \beta_j), \dots, (\lambda_1, \dots, \lambda_h)$ be n+1 sets, each of which is a finite ordered set of positive integers. Then $\mathfrak{B}W^{(l_1)}(\alpha_1, \dots, \alpha_i) \cap \mathfrak{B}W^{(l_2)}(\beta_1, \dots, \beta_j) \cap \dots \cap \mathfrak{B}W^{(l_{n+2})}(\lambda_1, \dots, \lambda_h) = \phi$ for $1 \leq l_1 < l_2 < \dots < l_{n+1} \leq s$.

Proof. According to Lemma 1 (ii) we have

 $(\mathfrak{B}V_{1a_{1}}^{(l_{1})} \bigcup \mathfrak{B}V_{2a_{2}}^{(l_{1})} \bigcup \cdots \bigcup \mathfrak{B}V_{ia_{j}}^{(l_{1})}) \cap (\mathfrak{B}V_{1\beta_{1}}^{(l_{3})} \bigcup \cdots \bigcup \mathfrak{B}V_{j\beta_{j}}^{(l_{2})}) \\ \cap \cdots \cap (\mathfrak{B}V_{1\lambda_{1}}^{(l_{m+1})} \bigcup \cdots \bigcup \mathfrak{B}V_{\lambda\lambda_{m}}^{(l_{m+1})}) = \phi.$

But $\mathfrak{B}W^{(i)}(\alpha_1, \cdots, \alpha_i) \subset (\mathfrak{B}V^{(i)}_{1\alpha_1} \cup \cdots \cup \mathfrak{B}V^{(i)}_{i\alpha_i})$, thus the lemma is proved.

Theorem. If a product space $X \times Y$ of a space X with a separable metrizable space Y is countably paracompact and normal, then $\dim (X \times Y) \leq \dim X + \dim Y.$

Proof. Suppose dim X=m and dim Y=n, and put s=m+n+1. Let $F^{(1)}$ and $G^{(1)}$ be arbitrarily given closed sets and open sets respectively such that $F^{(1)} \subset G^{(1)}$ $(1 \le l \le s)$.

There are open sets $L^{(l)}$ and $M^{(l)}(1 \leq l \leq s)$ such that

 $F^{\scriptscriptstyle (l)} \subset M^{\scriptscriptstyle (l)} \subset \overline{M^{\scriptscriptstyle (l)}} \subset L^{\scriptscriptstyle (l)} \subset \overline{L^{\scriptscriptstyle (l)}} \subset G^{\scriptscriptstyle (l)}.$

We put

 $N_1^{(l)} = X \times Y - \overline{M^{(l)}}, N_2^{(l)} = L^{(l)}.$

Then $\mathfrak{N}^{(l)} = \{N_1^{(l)}, N_2^{(l)}\}$ is an open covering of $X \times Y$ for any l. We put

(1) $G^{(1)}(\alpha_1, \dots, \alpha_i; k) = \text{Int} \{x | x \times W^{(1)}(\alpha_1, \dots, \alpha_i) \subset N_k^{(1)}\} \ (k=1, 2).$ (Here Int A means the interior of the subset A.)

Then $G^{(1)}(\alpha_1, \dots, \alpha_i; k) \times W^{(1)}(\alpha_1, \dots, \alpha_i) \subset N_k^{(l)}$. By (1) we get immediately $G^{(1)}(\alpha_1, \dots, \alpha_i; k) \subset G^{(l)}(\alpha_1, \dots, \alpha_i; \alpha_{l+1}; k)$.

Put $G^{(1)}(\alpha_1, \cdots, \alpha_i) = G^{(1)}(\alpha_1, \cdots, \alpha_i; 1) \bigcup G^{(1)}(\alpha_1, \cdots, \alpha_i; 2).$ Then

 $G^{(l)}(\alpha_1,\cdots,\alpha_i) \subset G^{(l)}(\alpha_1,\cdots,\alpha_i,\alpha_{i+1}).$

Consequently $\{G^{(1)}(\alpha_1, \dots, \alpha_i) \times W^{(1)}(\alpha_1, \dots, \alpha_i) | \alpha_1, \dots, \alpha_i; i\}$ is a basic covering ([3]) for each l.

Now, since $X \times Y$ is countably paracompact and normal, we get a special refinement ([3]). That is to say, there exists a family $\{F^{(i)}(\alpha_1, \dots, \alpha_i) | \alpha_1, \dots, \alpha_i; i\}$ of closed sets in X such that

 $F^{(1)}(\alpha_1, \cdots, \alpha_i) \subset G^{(1)}(\alpha_1, \cdots, \alpha_i) \qquad \text{and that} \\ \{F^{(1)}(\alpha_1, \cdots, \alpha_i) \times W^{(1)}(\alpha_1, \cdots, \alpha_i) | \alpha_1, \cdots, \alpha_i; i\} \text{ is a covering of } X \times Y. \\ \text{From the relation that } F^{(1)}(\alpha_1, \cdots, \alpha_i) \subset G^{(1)}(\alpha_1, \cdots, \alpha_i; 1) \cup G^{(1)}(\alpha_1, \cdots, \alpha_i; 1)$

 \cdots , α_i ; 2) it follows that there are closed sets

 $F^{(1)}(\alpha_1, \cdots, \alpha_i; 1) \text{ and } F^{(1)}(\alpha_1, \cdots, \alpha_i; 2) \text{ of } X \text{ such that} \\F^{(1)}(\alpha_1, \cdots, \alpha_i) = F^{(1)}(\alpha_1, \cdots, \alpha_i; 1) \bigcup F^{(1)}(\alpha_1, \cdots, \alpha_i; 2) \text{ and} \\F^{(1)}(\alpha_1, \cdots, \alpha_i; k) \subset G^{(1)}(\alpha_1, \cdots, \alpha_i; k) (k=1, 2).$

The relation $(G^{(1)}(\alpha_1, \cdots, \alpha_i; 1) \times W^{(1)}(\alpha_1, \cdots, \alpha_i)) \cap F^{(1)} = \phi$ is reduced to $(F^{(1)}(\alpha_1, \cdots, \alpha_i; 1) \times W^{(1)}(\alpha_1, \cdots, \alpha_i)) \cap F^{(1)} = \phi$.

By the assumption that dim X=m, there is a family

 $\{H^{(l)}(\alpha_1,\cdots,\alpha_i;k) \mid \alpha_1,\cdots,\alpha_i; i; 1 \leq l \leq s\}$ of open sets in X such that $F^{(1)}(\alpha_1, \dots, \alpha_i; k) \subset H^{(1)}(\alpha_1, \dots, \alpha_i; k)$ $\subset G^{(1)}(\alpha_1, \cdots, \alpha_i; k)$ and that (2) the order of $\{\mathfrak{B}H^{(l)}(\alpha_1,\cdots,\alpha_i;k) \mid \alpha_1,\cdots,\alpha_i; i; 1 \leq l \leq s; k=1,2\}$ is at most m. Let us put $(3) \quad H_i^{(l)} = \bigcup \{ H^{(l)}(\alpha_1, \cdots, \alpha_i; 2) \times W^{(l)}(\alpha_1, \cdots, \alpha_i) | \alpha_1, \cdots, \alpha_i \},$ (4) $K_i^{(1)} = \bigcup \{ H^{(1)}(\alpha_1, \cdots, \alpha_i; 1) \times W^{(1)}(\alpha_1, \cdots, \alpha_i) | \alpha_i, \cdots, \alpha_i \}.$ And put $P_1^{(l)} = H_1^{(l)}$, $Q_1^{(l)} = K_1^{(l)} - \overline{H_1^{(l)}}$, $P_i^{(l)} = H_i^{(l)} - \bigcup_{j=1}^{i-1} \overline{K_j^{(l)}}$, $Q_i^{(l)} = K_i^{(l)} - \bigcup_{j=1}^{i} \overline{H_j^{(l)}}$ $(i \ge 2)$, $P^{(l)} = \bigcup_{i=1}^{\infty} P_i^{(l)}$ and $Q^{(l)} = \bigcup_{i=1}^{\infty} Q_i^{(l)}$.* Then we have $X \times Y = (\tilde{\bigcup} \overline{P_i^{(l)}}) \bigcup (\tilde{\bigcup} \overline{Q_i^{(l)}}),$ (5)(6) $P^{(1)} \cap Q^{(1)} = \phi, \overline{P_j^{(1)}} \subset G^{(1)} \ (j=1,2,\cdots) \text{ and } Q^{(1)} \cap \overline{M^{(1)}} = \phi.$ Finally we put $V^{(1)} = X \times Y - \overline{Q^{(1)}}$; then we have $\mathfrak{B}V^{(1)} \subset \mathfrak{B}Q^{(1)}$ (7)Since $Q^{(1)} \cap M^{(1)} = \phi$ by (6) and $M^{(1)}$ is open, we have $\overline{Q^{(1)}} \cap M^{(1)}$ $=\phi$, and hence $F^{(1)} \subset M^{(1)} \subset V^{(1)}$. On the other hand, since $V^{(i)} = X \times Y - \overline{Q^{(i)}} \subset X \times Y - \bigcup_{i=1}^{N} \overline{Q_i^{(i)}} \subset \bigcup_{i=1}^{N} \overline{P_i^{(i)}}$ $\subset G^{(i)}$ we have $F^{(l)} \subset V^{(l)} \subset G^{(l)}$ (8)Since $\overline{P_i^{(l)}} = P_i^{(l)} \cup (\overline{P_i^{(l)}} - P_i^{(l)})$ and $\overline{Q_i^{(l)}} = Q_i^{(l)} \cup (\overline{Q_i^{(l)}} - Q_i^{(l)})$ we have by (5) $X \times Y = P^{(l)} \bigcup Q^{(l)} \bigcup (\bigcup_{i=1}^{n} \mathfrak{B} P_i^{(l)}) \bigcup (\bigcup_{i=1}^{n} \mathfrak{B} Q_i^{(l)}).$ (9)Since $P^{(l)}$ is open, $P^{(l)} \cap \overline{Q^{(l)}} = \phi$ by (6), and hence $P^{(i)} \cap \mathfrak{B}Q^{(i)} = \phi.$ (10)Combining (7) with (9) and (10), we have $\mathfrak{B}V^{(l)} \subset \mathfrak{B}Q^{(l)} \subset (\bigcup_{i=1}^{\infty} \mathfrak{B}P_i^{(l)}) \bigcup (\bigcup_{i=1}^{\infty} \mathfrak{B}Q_i^{(l)}).$ (11)On the other hand we have $\mathfrak{B}P_i^{(l)} \!=\! \mathfrak{B}(H_i^{(l)} \!-\! \bigcup_{i=1}^{i-1} \overline{K_j^{(l)}}) \!\subset\! (\mathfrak{B}H_i^{(l)} \!\cup\! (\bigcup_{i=1}^{i-1} \mathfrak{B}K_i^{(l)})),$ (12)and $\mathfrak{B}Q_i^{(l)} \subset (\mathfrak{B}K_i^{(l)} \cup (\bigcup_{j=1}^i \mathfrak{B}H_j^{(l)})).$ (13)Now (11), (12), and (13) give us $\mathfrak{B}V^{(i)} \subset \mathfrak{B}Q^{(i)} \subset (\bigcup_{i=1}^{n} \mathfrak{B}H_{i}^{(l)}) \cup (\bigcup_{i=1}^{n} \mathfrak{B}K_{i}^{(l)}),$ (14)hence we have $(\overset{\circ}{\cap} \mathfrak{B}V^{(l)} \subset \overset{\circ}{\cap} [(\overset{\circ}{\cup} \mathfrak{B}H_{i}^{(l)}) \cup (\overset{\circ}{\cup} \mathfrak{B}K_{i}^{(l)})].$ (15)Since $\{W^{(1)}(\alpha_1, \dots, \alpha_i) | \alpha_1, \dots, \alpha_i\}$ is locally finite, we have

No. 4]

^{*)} The argument below is the same as that in [6, Lemma 2.2].

```
[Vol. 40,
```

$$\begin{split} & \Re H_{i}^{(t)} \subset \left[\bigcup \left\{ \Re (H^{(t)}(\alpha_{1},\cdots,\alpha_{i};2)\times W^{(t)}(\alpha_{1},\cdots,\alpha_{i})) | \alpha_{1},\cdots,\alpha_{i} \right\} \right] \\ &= \left[\bigcup \left\{ \Re H^{(t)}(\alpha_{1},\cdots,\alpha_{i};2)\times \Re W^{(t)}(\alpha_{1},\cdots,\alpha_{i}) | \alpha_{1},\cdots,\alpha_{i} \right\} \right] \\ & \cup \left[\bigcup \left\{ \overline{H^{(t)}}(\alpha_{1},\cdots,\alpha_{i};2)\times \Re W^{(t)}(\alpha_{1},\cdots,\alpha_{i}) | \alpha_{1},\cdots,\alpha_{i} \right\} \right] \\ & \text{in view of (3). Likewise} \\ & \Re K_{i}^{(t)} \subset \left[\bigcup \left\{ \Re H^{(t)}(\alpha_{1},\cdots,\alpha_{i};1)\times \overline{W^{(t)}}(\alpha_{1},\cdots,\alpha_{i}) | \alpha_{1},\cdots,\alpha_{i} \right\} \right] \\ & \cup \left[\bigcup \left\{ H^{(t)}(\alpha_{1},\cdots,\alpha_{i};1)\times \Re W^{(t)}(\alpha_{1},\cdots,\alpha_{i}) | \alpha_{1},\cdots,\alpha_{i} \right\} \right] \\ & \cup \left[\bigcup \left\{ H^{(t)}(\alpha_{1},\cdots,\alpha_{i};1)\times \Re W^{(t)}(\alpha_{1},\cdots,\alpha_{i}) | \alpha_{1},\cdots,\alpha_{i} \right\} \right] \\ & \text{in view of (4).} \\ & \text{Let us put } E_{1}^{(t)}(\alpha_{1},\cdots,\alpha_{i};k) = \Re H^{(t)}(\alpha_{1},\cdots,\alpha_{i};k) \times \overline{W^{(t)}}(\alpha_{1},\cdots,\alpha_{i}) \\ & \text{not } E_{2}^{(t)}(\alpha_{1},\cdots,\alpha_{i};k) = \overline{H^{(t)}}(\alpha_{1},\cdots,\alpha_{i};k) \times \Re W^{(t)}(\alpha_{1},\cdots,\alpha_{i};k) \\ & \text{Then (14) can be expressed as} \\ & (14') \quad \Re V^{(t)} \subset \bigcup \left\{ E_{1}^{(t)}(\alpha_{1},\cdots,\alpha_{i};k) \cup E_{2}^{(t)}(\alpha_{1},\cdots,\alpha_{i};k) | \alpha_{1},\cdots,\alpha_{i};i; \\ k=1,2 \right\}. \\ & \text{The right hand side of (15) is a union of sets of the form} \\ & (16) \qquad E_{i_{1}}^{(t)}(\alpha_{1}^{(t)},\cdots,\alpha_{i_{1}^{(t)};k}) \bigcap E_{i_{2}}^{(t)}(\alpha_{1}^{(t)},\cdots,\alpha_{i_{2}^{(t)};k_{2}) \\ & \cap \cdots \bigcap E_{i_{8}}^{(t)}(\alpha_{1}^{(t)},\cdots,\alpha_{i_{8}^{(t)};k_{1}) \\ & \cap \cdots \bigcap E_{i_{8}}^{(t)}(\alpha_{1}^{(t)},\cdots,\alpha_{i_{8}^{(t)};k_{2}) \\ & \cap \cdots \bigcap E_{i_{8}}^{(t)}(\alpha_{1}^{(t)},\cdots,\alpha_{i_{8}^{(t)};k_{1}) \\ & \cap \cdots \bigcap E_{i_{8}}^{(t)}(\alpha_{1}^{(t)},\cdots,\alpha_{i_{8}^{(t)};k_{2}) \\ & \cap \cdots \bigcap E_{i_{8}}^{(t)}(\alpha_{1}^{(t)},\cdots,\alpha_{i_{8}^{(t)};k_{1}) \\ & \cap \cdots \bigcap E_{i_{8}}^{(t)}(\alpha_{1}^{(t)},\cdots,\alpha_{i_{8}^{(t)};k_{1}}) \\ & \cap \cdots \bigcap E_{i_{8}}^{(t)}(\alpha_{1}^{(t)},\cdots,\alpha_{i_{8}^{(t)};k_{1}}) \\ & (16) \qquad E_{i_{1}}^{(t)}(\alpha_{1}^{(t)},\cdots,\alpha_{i_{8}^{(t)};k_{1}}) \\ & \cap \cdots \bigcap E_{i_{8}}^{(t)}(\alpha_{1}^{(t)},\cdots,\alpha_{i_{8}^{(t)};k_{1}}) \\ & (16) \qquad E_{i_{9}}^{(t)}(\alpha_{1}^{(t)},\cdots,\alpha_{i_{8}^{(t)};k_{1}}) \\ & ($$

and hence countably paracompact normal. The following Corollary 1 follows directly from the theorem.

Corollary 1. If X is a perfectly normal space and Y is separable metrizable, then

 $\dim (X \times Y) \leq \dim X + \dim Y.$

If Y is a countable union of locally compact subsets then $X \times Y$ is countably paracompact normal for any countably paracompact normal space X ([3]), hence the following Corollary 2 follows.

Corollary 2. If X is a countably paracompact normal space and Y is a separable metrizable space which is a countable union of locally compact subsets, then

 $\dim (X \times Y) \leq \dim X + \dim Y.$

3. Finally we shall show that Michael's space defined in [1] serves as a counter example for (A).

Let X be a topological space which is obtained from the closed unit interval [0, 1] by retopologizing it so that a set M is open if and only if M is expressed as $M=G\cup L$ with an open set G in the usual sense and with L consisting of irrationals. Then dim X=0.

To show this we may construct such an open refinement of a given covering $\{U_1, U_2, \dots, U_k\}$ that its order is 1.

Let $\{p_1, p_2, \cdots\}$ be the set of all rationals; then there is an interval (λ_i, μ_i) $(\lambda_i \text{ and } \mu_i \text{ are irrational numbers in } [0, 1])$ for any *i* which is a neighborhood of p_i and which is contained in one of $\{U_j\}$. Then $\{(\lambda_i, \mu_i) | i=1, 2, \cdots\}$ is a family of open subsets of X each of which is contained in some element of $\{U_j\}$.

Now

$$(\lambda_i, \mu_i) - \bigcup_{t < i} [\lambda_t, \mu_t]$$

is expressed as a disjoint union of finite open intervals whose end points are irrational numbers. Accordingly

$$\{p_j | j=1, 2, \cdots\} \subset \sum_{i=1}^{\infty} (\alpha_i, \beta_i),$$

where α_i and β_i are irrational numbers and \sum stands for a disjoint union.

Let us put

$$A = X - \sum_{i=1}^{\infty} (\alpha_i, \beta_i),$$

then A is a subset of irrationals.

We put

 $V_{j} = \bigcup \{ (\alpha_{i}, \beta_{i}) | (\alpha_{i}, \beta_{i}) \oplus U_{i} \text{ for } l < j, (\alpha_{i}, \beta_{i}) \oplus U_{j} \} \\ \bigcup \{ x | x \in A, x \notin U_{i} \text{ for } l < j, x \in U_{j} \}.$

Clearly $\{V_1, V_2, \dots, V_k\}$ is a disjoint family and it is the desired refinement of $\{U_1, U_2, \dots, U_k\}$, and dim X=0 follows.

Let Y be a subspace of closed interval [0,1] consisting of all irrationals. Then, as is well known, dim Y=0.

E. Michael has shown ([1]) that $X \times Y$ is not normal. Generally any 0-dimensional space is always normal, hence $X \times Y$ is not 0dimensional, and hence

 $\dim X \times Y > \dim X + \dim Y.$

References

- E. Michael: The product of a normal space and a metric space need not be normal. Bull. Amer. Math. Soc., 69, 375-376 (1963).
- [2] K. Morita: On the dimension of product spaces. Amer. Jour. Math., vol. LXXV, No. 2, April, 205-223 (1953).
- [3] ——: Products of normal spaces with metric spaces. II. Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A, 8(190), 87-92 (1963).
- [4] ——: On the dimension of normal spaces II. Jour. Math. Soc. Japan, 2, 16-33 (1950).
- [5] ——-: On the product of a normal space with a metric space. Proc. Japan Acad., 39, 148-150 (1963).
- [6] —: Normal families and dimension theory for metric spaces. Math. Ann., 128, 350-362 (1954).