60. On the Covering Dimension of Product Spaces

By Nobuo Kimura
Hokkaido Gakugei University
(Comm. by Kinjirô KunugI, M.J.A., April 13, 1964)

Let X and Y be normal spaces. As for the covering dimension of the product space $X \times Y$ we have known several cases for which the following relation
$\operatorname{dim}(X \times Y) \leqq \operatorname{dim} X+\operatorname{dim} Y$
holds.
Especially when Y is a separable metrizable space, (A) has been proved in each of the following cases.
(a) X is metrizable ([2]).
(b) X is countably paracompact and normal, and Y is locally compact ([2]).

In the present paper we shall prove (A) under the conditions that Y is separable metrizable and $X \times Y$ is countably paracompact and normal.

Recently E. Michael [1] has given a non-normal space $X \times Y$ which is a product space of a hereditarily paracompact normal space X with a separable metric space Y. This space $X \times Y$ is not 0 dimensional, nevertheless X and Y are 0-dimensional; thus (A) does not hold.

Accordingly the normality of $X \times Y$ is indispensable.
The idea of the proof for our theorem is based on the "basic coverings" introduced by K. Morita ([3]).

1. Henceforth Y always means a separable metrizable space.

Lemma 1. Suppose that $\operatorname{dim} Y=n$ and let s be an arbitrary positive integer: then there are locally finite countable coverings

$$
\mathfrak{Y}_{i}^{(l)}=\left\{V_{i \alpha}^{(2)} \mid \alpha=1,2, \cdots\right\} \quad(1 \leqq l \leqq s ; i=1,2, \cdots)
$$

satisfying the following conditions (i) and (ii).
(i) $\bigcup_{i} \mathfrak{B}_{i}^{(l)}$ is an open basis of Y for any $l(1 \leqq l \leqq s)$.
(ii) The order of the family $\left\{\mathfrak{B} V_{i \alpha}^{(L)} \mid i, \alpha=1,2, \cdots ; 1 \leqq l \leqq s\right\}$ is at most n. (Here $\mathfrak{B} V_{i \alpha}^{(l)}$ means $\overline{V_{i \alpha}^{(2)}}-V_{i \alpha}^{(l)}$.)

Proof. The existence of $\mathfrak{B}_{i}^{(l)}$ satisfying (i) is well known (e.g. [3]), and these may be considered as countable coverings for any i and l, according to separability of Y. Moreover, the existence of such $\mathfrak{F}_{i}^{(r)}$ that satisfy (ii) is assured by the shrinkability of the covering $\mathfrak{F}_{i}^{(l)}$ and [4].

Put $\quad W^{(l)}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{i}\right)=V_{1 \alpha_{1}}^{(l)} \cap V_{2 \alpha_{2}}^{(l)} \cap \cdots \cap V_{i \alpha_{i}}^{(l)}$.

Lemma 2. Let $\left(\alpha_{1}, \cdots, \alpha_{i}\right),\left(\beta_{1}, \cdots, \beta_{j}\right), \cdots,\left(\lambda_{1}, \cdots, \lambda_{h}\right)$ be $n+1$ sets, each of which is a finite ordered set of positive integers. Then $\mathfrak{B} W^{\left(l_{1}\right)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \cap \mathfrak{B} W^{\left(l_{2}\right)}\left(\beta_{1}, \cdots, \beta_{j}\right) \cap \cdots \cap \mathfrak{B} W^{\left(l_{n+1}\right)}\left(\lambda_{1}, \cdots, \lambda_{h}\right)=\phi \quad$ for $1 \leqq l_{1}<l_{2}<\cdots<l_{n+1} \leqq s$.

Proof. According to Lemma 1 (ii) we have $\left(\mathfrak{B} V_{1 \alpha_{1}}^{\left(L_{1}\right)} \bigcup \mathfrak{B} V_{2 \alpha_{2}}^{\left(L_{1}\right)} \bigcup \cdots \bigcup \mathfrak{B} V_{i \alpha_{i}}^{\left(L_{1}\right)}\right) \cap\left(\mathfrak{B} V_{1 \beta_{1}}^{\left(l_{2}\right)} \cup \cdots \bigcup \mathfrak{B} V_{j \beta_{j}}^{\left(l_{2}\right)}\right)$

$$
\cap \cdots \cap\left(\mathfrak{B} V_{1 \lambda_{1}}^{\left(l_{n+1}\right)} \cup \cdots \cup \mathfrak{B} V_{h \lambda_{h}}^{(l n+1)}\right)=\phi .
$$

But $\mathfrak{B} W^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \subset\left(\mathfrak{B} V_{i \alpha_{1}}^{(l)} \cup \cdots \bigcup \mathfrak{B} V_{i \alpha_{i}}^{(l)}\right)$, thus the lemma is proved.
Theorem. If a product space $X \times Y$ of a space X with a separable metrizable space Y is countably paracompact and normal, then $\operatorname{dim}(X \times Y) \leqq \operatorname{dim} X+\operatorname{dim} Y$.
Proof. Suppose $\operatorname{dim} X=m$ and $\operatorname{dim} Y=n$, and put $s=m+n+1$.
Let $F^{(l)}$ and $G^{(l)}$ be arbitrarily given closed sets and open sets respectively such that $F^{(l)} \subset G^{(l)}(1 \leqq l \leqq s)$.

There are open sets $L^{(l)}$ and $M^{(l)}(1 \leqq l \leqq s)$ such that

$$
F^{(l)} \subset M^{(l)} \subset \overline{M^{(l)}} \subset L^{(l)} \subset \overline{L^{(l)}} \subset G^{(l)}
$$

We put

$$
N_{1}^{(l)}=X \times Y-\overline{M^{(l)}}, N_{2}^{(l)}=L^{(l)} .
$$

Then $\mathfrak{R}^{(l)}=\left\{N_{1}^{(l)}, N_{2}^{(l)}\right\}$ is an open covering of $X \times Y$ for any l. We put
(1) $\quad G^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right)=\operatorname{Int}\left\{x \mid x \times W^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \subset N_{k}^{(l)}\right\}(k=1,2)$.
(Here Int A means the interior of the subset A.)
Then $G^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right) \times W^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \subset N_{k}^{(l)}$. By (1) we get immediately $\quad G^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right) \subset G^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}, \alpha_{i+1} ; k\right)$.

Put $\quad G^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right)=G^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 1\right) \cup G^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 2\right)$.
Then

$$
G^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \subset G^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}, \alpha_{i+1}\right) .
$$

Consequently $\left\{G^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \times W^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \mid \alpha_{1}, \cdots, \alpha_{i} ; i\right\}$ is a basic covering ([3]) for each l.

Now, since $X \times Y$ is countably paracompact and normal, we get a special refinement ([3]). That is to say, there exists a family $\left\{F^{(c)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \mid \alpha_{1}, \cdots, \alpha_{i} ; i\right\}$ of closed sets in X such that

$$
F^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \subset G^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \quad \text { and that }
$$

$\left\{F^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \times W^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \mid \alpha_{1}, \cdots, \alpha_{i} ; i\right\}$ is a covering of $X \times Y$.
From the relation that $F^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \subset G^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 1\right) \cup G^{(l)}\left(\alpha_{1}\right.$, $\ldots, \alpha_{i} ; 2$) it follows that there are closed sets

$$
\begin{aligned}
& F^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 1\right) \text { and } F^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 2\right) \quad \text { of } X \text { such that } \\
& F^{(2)}\left(\alpha_{1}, \cdots, \alpha_{i}\right)=F^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 1\right) \cup F^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 2\right) \text { and } \\
& F^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right) \subset G^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right)(k=1,2) .
\end{aligned}
$$

The relation $\left(G^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 1\right) \times W^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right)\right) \cap F^{(l)}=\phi$ is reduced to $\left(F^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 1\right) \times W^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right)\right) \cap F^{(l)}=\phi$.

By the assumption that $\operatorname{dim} X=m$, there is a family

$$
\left\{H^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right) \mid \alpha_{1}, \cdots, \alpha_{i} ; i ; 1 \leqq l \leqq s\right\}
$$

of open sets in X such that $F^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right) \subset H^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right)$ $\subset G^{(2)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right)$ and that
(2) the order of $\left\{\mathfrak{B} H^{(v)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right) \mid \alpha_{1}, \cdots, \alpha_{i} ; i ; 1 \leqq l \leqq s ; k=1,2\right\}$ is at most m.

Let us put
(3) $H_{i}^{(l)}=\bigcup\left\{H^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 2\right) \times W^{(i)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \mid \alpha_{1}, \cdots, \alpha_{i}\right\}$,
(4) $K_{i}^{(l)}=\bigcup\left\{H^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 1\right) \times W^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \mid \alpha_{i}, \cdots, \alpha_{i}\right\}$.

And put $P_{1}^{(l)}=H_{1}^{(l)}, Q_{1}^{(l)}=K_{1}^{(l)}-\overline{\bar{N}_{1}^{(1)}}, P_{i}^{(l)}=H_{i}^{(L)}-\bigcup_{j=1}^{i-1} \overline{K_{j}^{(1)}}, Q_{i}^{(L)}=K_{i}^{(l)}-\bigcup_{j=1}^{i} \overline{j_{j}^{(i)}}$ $(i \geqq 2), P^{(i)}=\bigcup_{i=1}^{\infty} P_{i}^{(i)}$ and $Q^{(i)}=\bigcup_{i=1}^{\infty} Q_{i}^{(i)} . .^{*)}$
Then we have

$$
\begin{equation*}
X \times Y=\left(\bigcup_{i=1}^{\infty} \overline{P_{i}^{(i)}}\right) \cup\left(\bigcup_{i=1}^{\infty} \overline{Q_{i}^{(i)}}\right), \tag{5}
\end{equation*}
$$

(6) $P^{(l)} \cap Q^{(l)}=\phi, \overline{P_{j}^{(l)}} \subset G^{(l)}(j=1,2, \cdots)$ and $Q^{(l)} \cap \overline{M^{(l)}}=\phi$.

Finally we put $V^{(t)}=X \times Y-\overline{Q^{(i)}}$; then we have
(7) $\mathfrak{B} V^{(1)} \subset \mathfrak{B} Q^{(2)}$.
Since $Q^{(l)} \cap M^{(l)}=\phi$ by (6) and $M^{(2)}$ is open, we have $\overline{Q^{(2)}} \cap M^{(l)}$ $=\phi$, and hence $F^{(l)} \subset M^{(l)} \subset V^{(t)}$.

On the other hand, since $V^{(i)}=X \times Y-\overline{Q^{(i)}} \subset X \times Y-\bigcup_{i=1}^{\infty} \overline{Q_{i}^{(i)}} \subset \bigcup_{i=1}^{\infty} \overline{P_{i}^{(i)}}$ $\subset G^{(l)}$ we have
(8)

$$
F^{(l)} \subset V^{(L)} \subset G^{(l)} .
$$

Since $\overline{P_{i}^{(2)}}=P_{i}^{(2)} \cup\left(\overline{P_{i}^{(2)}}-P_{i}^{(2)}\right)$ and $\overline{Q_{i}^{(2)}}=Q_{i}^{(l)} \cup\left(\overline{Q_{i}^{(2)}}-Q_{i}^{(2)}\right)$ we have by (5)

$$
\begin{equation*}
X \times Y=P^{(l)} \cup Q^{(i)} \cup\left(\bigcup_{i=1}^{\infty} \mathfrak{B} P_{i}^{(i)}\right) \cup\left(\bigcup_{i=1}^{\infty} \mathfrak{B} Q_{i}^{(L)}\right) . \tag{9}
\end{equation*}
$$

Since $P^{(t)}$ is open, $P^{(2)} \cap \overline{Q^{(2)}}=\phi$ by (6), and hence

$$
\begin{equation*}
P^{(i)} \cap \mathfrak{B} Q^{(i)}=\phi . \tag{10}
\end{equation*}
$$

Combining (7) with (9) and (10), we have

$$
\begin{equation*}
\mathfrak{B} V^{(l)} \subset \mathfrak{B} Q^{(i)} \subset\left(\bigcup_{i=1}^{\infty} \mathfrak{B} P_{i}^{(2)}\right) \cup\left(\bigcup_{i=1}^{\infty} \mathfrak{B} Q_{i}^{(2)}\right) . \tag{11}
\end{equation*}
$$

On the other hand we have
and

$$
\begin{equation*}
\mathfrak{B} P_{i}^{(2)}=\mathfrak{B}\left(H_{i}^{(2)}-\bigcup_{j=1}^{i-1} \overline{K_{j}^{(2)}}\right) \subset\left(\mathfrak{B} H_{i}^{(l)} \cup\left(\bigcup_{j=1}^{i-1} \mathfrak{B} K_{i}^{(i)}\right)\right), \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\mathfrak{B} Q_{i}^{(2)} \subset\left(\mathfrak{B} K_{i}^{(l)} \cup\left(\bigcup_{j=1}^{i} \mathfrak{B} H_{j}^{(l)}\right)\right) . \tag{11}
\end{equation*}
$$

Now (11), (12), and (13) give us
hence we have

$$
\begin{equation*}
\bigcap_{i=1}^{B} \mathfrak{B} V^{(i)} \subset \bigcap_{i=1}^{B}\left[\left(\bigcup_{i=1}^{\infty} \mathfrak{B} H_{i}^{(l)}\right) \cup\left(\bigcup_{i=1}^{\infty} \mathfrak{B} K_{i}^{(l)}\right)\right] . \tag{14}
\end{equation*}
$$

Since $\left\{W^{(i)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \mid \alpha_{1}, \cdots, \alpha_{i}\right\}$ is locally finite, we have

[^0]\[

$$
\begin{aligned}
& \mathfrak{B} H_{i}^{(l)} \subset\left[\bigcup\left\{\mathfrak{B}\left(H^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 2\right) \times W^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right)\right) \mid \alpha_{1}, \cdots, \alpha_{i}\right\}\right] \\
& \quad=\left[\bigcup \left\{\mathfrak{B} H^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 2\right) \times \overline{\left.\left.W^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \mid \alpha_{1}, \cdots, \alpha_{i}\right\}\right]}\right.\right. \\
& \quad \bigcup\left[\bigcup \left\{\overline{\left.\left.H^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 2\right) \times \mathfrak{B} W^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \mid \alpha_{1}, \cdots, \alpha_{i}\right\}\right]}\right.\right.
\end{aligned}
$$
\]

in view of (3). Likewise

$$
\begin{gathered}
\mathfrak{B} K_{i}^{(l)} \subset\left[\bigcup\left\{\mathfrak{B} H^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 1\right) \times \bar{W}^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \mid \alpha_{1}, \cdots, \alpha_{i}\right\}\right] \\
\cup\left[\bigcup\left\{H^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; 1\right) \times \mathfrak{B} W^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right) \mid \alpha_{1}, \cdots, \alpha_{i}\right\}\right]
\end{gathered}
$$

in view of (4).
Let us put $\left.E_{1}^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right)=\mathfrak{B} H^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right) \times \overline{W^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right.}\right)$ and $E_{2}^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right)=\overline{H^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right)} \times \mathfrak{B} W^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i}\right)$.

Then (14) can be expressed as

$$
\begin{align*}
& \mathfrak{B} V^{(l)} \subset \cup\left\{E_{1}^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right) \cup E_{2}^{(l)}\left(\alpha_{1}, \cdots, \alpha_{i} ; k\right) \mid \alpha_{1}, \cdots, \alpha_{i} ; i ;\right. \tag{14'}\\
& k=1,2\} .
\end{align*}
$$

The right hand side of (15) is a union of sets of the form

$$
\begin{equation*}
E_{\delta_{1}}^{(1)}\left(\alpha_{1}^{(1)}, \cdots, \alpha_{i_{1}}^{(1)} ; k_{1}\right) \cap E_{\delta_{2}}^{(2)}\left(\alpha_{1}^{(2)}, \cdots, \alpha_{i_{2}}^{(2)} ; k_{2}\right) \tag{16}
\end{equation*}
$$

$$
\cap \cdots \cap E_{\delta_{s}}^{(s)}\left(\alpha_{1}^{(s)}, \cdots, \alpha_{i_{s}}^{(2)} ; k_{s}\right)
$$

in view of (14'). Here each of $\delta_{1}, \cdots, \delta_{s}, k_{1}, \cdots, k_{s}$ is 1 or 2.
Let us suppose that

$$
\delta_{i_{1}}=\delta_{i_{2}}=\cdots=\delta_{i_{p}}=1, \delta_{j_{1}}=\delta_{j_{2}}=\cdots=\delta_{j_{q}}=2 \quad(p+q=s) .
$$

If $p \geqq n+1$ then (16) is empty by (2), on the contrary if $p<n+1$ then $q=s-p=(m+n+1)-p \geqq m+1$ and (16) is also empty by Lemma 1. Thus (16) is empty in any case.

Consequently the right hand side of (15) is empty, hence we have

$$
\begin{equation*}
\bigcap_{i=1}^{s} \mathfrak{B} V^{(l)}=\phi \tag{17}
\end{equation*}
$$

Now the theorem follows from (8) and (17) ([4]).
2. If X is perfectly normal, then $X \times Y$ is perfectly normal ([5]), and hence countably paracompact normal. The following Corollary 1 follows directly from the theorem.

Corollary 1. If X is a perfectly normal space and Y is separable metrizable, then
$\operatorname{dim}(X \times Y) \leqq \operatorname{dim} X+\operatorname{dim} Y$.
If Y is a countable union of locally compact subsets then $X \times Y$ is countably paracompact normal for any countably paracompact normal space X ([3]), hence the following Corollary 2 follows.

Corollary 2. If X is a countably paracompact normal space and Y is a separable metrizable space which is a countable union of locally compact subsets, then

$$
\operatorname{dim}(X \times Y) \leqq \operatorname{dim} X+\operatorname{dim} Y
$$

3. Finally we shall show that Michael's space defined in [1] serves as a counter example for (A).

Let X be a topological space which is obtained from the closed unit interval $[0,1]$ by retopologizing it so that a set M is open if
and only if M is expressed as $M=G \cup L$ with an open set G in the usual sense and with L consisting of irrationals. Then $\operatorname{dim} X=0$.

To show this we may construct such an open refinement of a given covering $\left\{U_{1}, U_{2}, \cdots, U_{k}\right\}$ that its order is 1 .

Let $\left\{p_{1}, p_{2}, \cdots\right\}$ be the set of all rationals; then there is an interval $\left(\lambda_{i}, \mu_{i}\right)$ (λ_{i} and μ_{i} are irrational numbers in $[0,1]$) for any i which is a neighborhood of p_{i} and which is contained in one of $\left\{U_{j}\right\}$. Then $\left\{\left(\lambda_{i}, \mu_{i}\right) \mid i=1,2, \cdots\right\}$ is a family of open subsets of X each of which is contained in some element of $\left\{U_{j}\right\}$.

Now

$$
\left(\lambda_{i}, \mu_{i}\right)-\bigcup_{t<i}\left[\lambda_{t}, \mu_{t}\right]
$$

is expressed as a disjoint union of finite open intervals whose end points are irrational numbers. Accordingly

$$
\left\{p_{j} \mid j=1,2, \cdots\right\} \subset \sum_{i=1}^{\infty}\left(\alpha_{i}, \beta_{i}\right),
$$

where α_{i} and β_{i} are irrational numbers and \sum stands for a disjoint union.

Let us put

$$
A=X-\sum_{i=1}^{\infty}\left(\alpha_{i}, \beta_{i}\right),
$$

then A is a subset of irrationals.
We put

$$
\begin{aligned}
V_{j}= & \bigcup\left\{\left(\alpha_{i}, \beta_{i}\right) \mid\left(\alpha_{i}, \beta_{i}\right) \nsubseteq U_{l} \text { for } l<j,\left(\alpha_{i}, \beta_{i}\right) \subset U_{j}\right\} \\
& \bigcup\left\{x \mid x \in A, x \notin U_{l} \text { for } l<j, x \in U_{j}\right\} .
\end{aligned}
$$

Clearly $\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ is a disjoint family and it is the desired refinement of $\left\{U_{1}, U_{2}, \cdots, U_{k}\right\}$, and $\operatorname{dim} X=0$ follows.

Let Y be a subspace of closed interval $[0,1]$ consisting of all irrationals. Then, as is well known, $\operatorname{dim} Y=0$.
E. Michael has shown ([1]) that $X \times Y$ is not normal. Generally any 0 -dimensional space is always normal, hence $X \times Y$ is not 0 dimensional, and hence

$$
\operatorname{dim} X \times Y>\operatorname{dim} X+\operatorname{dim} Y
$$

References

[1] E. Michael: The product of a normal space and a metric space need not be normal. Bull. Amer. Math. Soc., 69, 375-376 (1963).
[2] K. Morita: On the dimension of product spaces. Amer. Jour. Math., vol. LXXV, No. 2, April, 205-223 (1953).
[3] -: Products of normal spaces with metric spaces. II. Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A, 8(190), 87-92 (1963).
[4] -: On the dimension of normal spaces II. Jour. Math. Soc. Japan, 2, 16-33 (1950).
[5] -: On the product of a normal space with a metric space. Proc. Japan Acad., 39, 148-150 (1963).
[6] --: Normal families and dimension theory for metric spaces. Math. Ann., 128, 350-362 (1954).

[^0]: *) The argument below is the same as that in [6, Lemma 2.2].

