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57 Representation of the State Vectors by Gelfand’s
Construction

By Hideo YAMAGATA
(Comm. by Kinjir5 KUNUG, M.J.A., April 13, 1964)

1. Introduction. In the previous paper [1], we have pointed
out that Wightman’s method using Gelfand’s construction can treat
only the free field.

Here, at the first step, the definition of the extended exponential
function is given. (In another paper, we will give the definition of
the extended exponential function which is more general and more
faithful to the local field theory.) Using this definition, let’s show
the following facts:

(1) If the testing function’s space in the expresssion exp (ig(f))
or exp (ir(f)) is (), the extended exponential function is same as
the ordinary exponential function and we can construct only the
eigenvectors of fee Hamiltonian by the above construction.

Namely, using this cut-off of momenta k, the extended exponential
function can be reduced to the ordinary exponential function.

( 2 If we wish to construct the eigenvectors of total Hamiltonian
related to the field with interaction, at least the testing function a
as the element of the sequence space must be used. Namely, further-
more, the conditional convergence must be used [2].

2. Notations and definitions. As the first step, the explicite
form of the field functions 9(x), (x), creation and annihilation
operators a+(k), a(k) and state vectors will be written down.

F(x)-:’-(1/(2zr)sn) {fa+(k) dk+ya(k) e-ikdk} (1)

zr(x)-(1/(2r)/){--fikoa/(k)e’dk+fikoa(k) e-’dk} (2)
where ko:/li-q-kq-k]Wm.

Let’s enclose the system in a box of finite volume V.
Considering the periodical extension of the above system, these

formulas vary to the following formulas:
r(x)-(1/,/F-)[,=(,,...,(a(k) e’’q-a(k) e-)] ( 3 )
r.(x)--(1//F-)[,,=,,,,,)(--ikoa/(k) d’q-ikoa(k) e-)], ( 4

where k0--/k k+ k]-Fm, and k, k., k are non-negative integers.
Hereafter, we use the following abbriviations: a/(k)d’-=a+(k,x),

a(k) e- a(k, x).
Creation and annihilation operators a/(k), a(k) satisfy the condi-

tions a+(k), a+(k’):_a(k), a(k’)]-O and a(k), a+(k’)]:,,.
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Let’s characterize the simultaneous eigenstate of the operators
N--a/(k)a(k) for all k by non-negative integer valued function n(k).

We denote this eigenstate with norm 1 by (n(k)). So the
creation and annihilation operators can be represented by the formulas
a/()(n(k))--/n+ l(n’(k)) and a(:)(n(k))--/(n"(k)), where

in(k) for k#k and n"(k)--In(k for kk
n’(k)--[n(k)+l for k=: n(k)--I for k--.

(0(k)) corresponds to the vacuum state. Here we show the defi-
nition of the extended exponential function which play the most
important role in this paper.

Let a(k) denote the unbounded operator a(k) for h-0 and a/(k)
for h:l.

Let b(a(k)) denote the coefficient of a(k) in 9(f).
Definition. We denote by exp(i(f))4(O(k)) the sum of the

following state vectors:
1 =(b(a(k))a(k)dk/j)(O(k)) where h=0 or 1.

(2) ) Let a denote the set of all possible operators
-I=[a(k)dk/j} such that the state (n(k)) can be constructed from
(0(k)) by using the creation and annihilation operators in this

infinite product.
(ii) Let a denote the set of all operators 1-I={a(k)dk/j} con-

structed from 1-I={a(k)dk/j} in a.

(iii) Let C(n(k), I]]={a(k)dk/j}) denote the complex number
1-L={b(a(k))/j}lll-I=ia(k)(O(k))ll. If C(n(k))-lim C(n(k),

{a(k)dk/j}) is definite and non-zero, we say that the state C(n(k))
(n(k)) is also the component of the state exp (i(f))q(O(k)).

If (x) can be expressed by the formulas (3) and (4), then dk= 1.
Next, we show the correspondence between Von Neumann’s direct
product space and the space of state vectors (n(k)) 3.

We denote by , the set of all possible momenta k.
Von Neumann’s direct proluct space is represented by
In this representation k corresponds to a momentum, the vacuum

state @(0(k)) corresponds to a 1-I(R)o (o$P,
Von Neumann’s direct product space can be decomposed in the

incomplete direct product space: I-i (R)) )0 ,....
The bases of 0 are written by a(R)()., where the non-

negative integer n(k)--O except for finite k.
These O have the following properties:

(i) O_kO for l:j,
(ii) )0 contains the vacuum state k(0(k)).

Specially we denote by ), the subspace of Von Neumann’s direct
product space whose bases are {[a/(k)_(O(k))/I][a/(k)J4(O(k))ll;
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n=0, 1,. .}.
3. The effect of the cut.off.
Example 1. Let’s choose the generalized function (2/-=

{(2/-p/,(x); n=l, 2,...} as f, where pl/,(x) is the function defined
by L. Schwartz [5].

In this case, exp ig(f)(O(k))-,%o(1/n!) [i{a(O)+a+(O)}](O(k)).
By the same way, exp itg(f)(O(k))=:=o(t/n)i[a(0)+ a (0)}] (0(k)),
where t is a parameter.

Since lim ={i(a(O)+a+(O))t/j}(O(k))]] lim =(2t/)-O
for finite t, then exp itF(f)(O(k)) is the same as ordinary exp,(f)
(O(k)), and is sum of the infinite state vectors (t/n!)a’(k)a(k)

"a’(kn)(O(k)), where a(k) is one of the operators a(k)or a+(k)
and n is a finite positive integer.

At the first step, [exp it(f)(O(k))]t=o=(O(k)). Next the formal
derivative of the state expit(f)(O(k)) by t is the following:
lim [{exp it(f)(O(k))--(O(k))} / it] lim =(t-/n)i-[a(0)+
0 tO

a+(O)}"..(O(k))={a(O)+a+(O)}.+(O(k)) in HO. By he same
way, considering he finite difference of exp it9(f)+(O(k))corresponding
to (1]i").d"]d, exp*9(f)(O(k)), we obtain ,he sequence +.=
C, exp it.,9(f).(O(k)), whieh eonverge to {a(O)+a+(O)}".(O(k))

By the suitable linear sum of he above sequences, he sequence
]=C,expit,(f).(O(k))] converging to an arbitrary ele-
men in is obtained.

Theorem. If f is contained in ($), then exp (i(f))p(O(k)) is
contained in 0.

Proo exp(ig(f))(O(k)) can be expressed by the formula

exp (i(f))-=o(iln ,)[(1/(2.)/) {ff x)

Let ()(O(k)) denote the state vector (i/n)(1/(2)
{f[f(x)a (k, x)+f(x)a(k, x)}dkdx. n(O(k)). We can easily see

h the inequgli  II
held. Since lim II((O())llim (1/{[()a}) lf(x) -0,

ex (ip(f)}.(O()) is the same as ex (ip(f))(O()), and is sum of
the infinite orhogonal elements (O(k))(=0,1,2,...). Purther-
more, from the above inequality, it follows that for an arbitrary
s>O, there exists N such that the following inequality is held:
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]l<>(0(k))ll<. Then the infinite linear sum exp i(f).4(O(k))
is convergent.

Secondary, let’s treat the terms <)(0(k)) for n<N. From the
Fourier transform of f(x) F(k)=f(x), let’s construct the set of func-

tions {F(k)} depending to N with the following properties: (1) Fy(k)}

is contained in (). (2) F(k)--F(k) for [k[<=N. (3) F(k)--O for
k] >N+ 1. (4) lim F(k)-- F(k) in the topology ().

Let f(x) denote the inverse Fourier transform -’F(k).
Then limf(x)--f(x) in ().

Since fg is contained in the space (D)--(Z) we can easily see

that 9(f) f9(x)f(x)dx- If9(x’)f(x’--x)dx’l__ 9*f=o.
Since 9.f--3-[(39.3f(k), the effect of the sufficiently large k

appear in 9(f). Nextdoes not

If2 ]f(x)--fg(x)]dx and II E{9(fg)}-{(f)}](O(k))
-9(f){9(fg)}-+ {9(f)}n]]]:<=nd.(1/(2z)) 4 If(x) ldx

If2 f(x)--f(x)ldx (n--0, 1,...) for f(x) with the property

f If(x)ldx>O and for sufficiently large N. (If f(x)0, the result

of this theorem is obvious.) From the above inequalities, it follows
that for an arbitrary e>0, there exists

--{(f)J](0(k)) II< for any pair (n, N) satisfied 0=<n<N and

NM.
Hence, for f contained in (i), exp (@(f))(O(k)) is the limit of

the sequence in 0 and contained in 0.
4. The conditional convergence. In the following Example 2,

it is obvious that the limit appearing in Definition is not convergent.
But by varying the method of the decision of coefficient C(n(k)) in
Definition and by using a sort of the conditional convergence, we
can obtain a definite non-zero component of the state corresponding
to that in Definition.

These components, are not contained in 0.
Furthermore, we can easily see that in 3 even if we use this

method exp it(f)(O(k)) is the same as ordinary exp it(f)(O(k)).
Let’s show here lemma using in the following Example 2.

Lemma. (,/-.)/d-. < 1 for p> k,
[(.)[,/p! =1 for p-k.
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Proof. (2) is evident from this formula.
From [(./.T) //p! ]/[(/.)-//(P--1) -/-./-K1 for

p>k, the inequality (1) is obtained.
Ixample 2. Choose the generalized function (2=)s//-.a=

(--=/2,0,0) as the testing function f, then expi(f)--=o(i"/n[)
[/-k{,,=.,,..,)(i-’a+(k)+i’a(k))} for non-negative integers k, k,
]C

Let’s construct the component (1(4/3-1, k., k), 0 (for the other
k)) of the state vector exp i(f)(O(k)) not contained in )0 by using
a sort of conditional convergence.

Let denote this component. Ordering the set of the triplet
of non negative integers {(4/3-1, k., ka); l, k=, ka are non negative inte-
gers}, construct the following sequence (1, 0, 0), (1, 1, 0), (1, 0, 1), (1,
2,0), (1,1,1), (1,0,2), (1,3,0), (1,2,1), (1,0,3), (1,4,0), (1,3,1), (1,2,2),

3), o, 4), (5, o, 0), (5, 0),. ..
Using the first m terms of the above sequence p-hold, construct

the considerable many sequences. Then we have (pro) / (p !) sequences.
Operate to the state (0(k)) pm creation operators i-a/(k) iteratedly
as follows: (i-a..,= +(k))}@(0(k)), where k correspond to the terms
of one of the above (pm)! / (p !) sequences.

Let a.0 denote the set of the above constructed states corre-
sponding to (pm) / (p !) sequences.

,;,,,oC({p(413-1, k., k), 0 (for the other k)], ={a+(k)/j})=

Since (/-.)//1 < 1 for p> k and 1 for p=k according to
the above Lemma, it follows that lira {(/.)//.}--0 for p> k and
=1 for p-k.

For p--k--l, this limit is a part of coefficient of the component. Hereafter, let’s confine the case k--1.
Next, by the same way, let’s obtain the coefficient of the same

state constructed from [I=[a (k)/3}(O(k))#O (by means of condi-
tion convergence) in which only one a’(k) is an annihilation operator.
Consider the set a, of the all possible states yi={a(k)/j}(O(k))-O
such that only one annihilation operator a(k) is always contained
in this formula and the operators a"(k)/j are always related to first
(N--2), k of the sequence which is obtained by the ordering of the
set of the above triplet. Then the sum of the coefficients is as follows:

,,v,C({1(4/+ 1, k., k), 0(for the other k)}, _{a’(k)/j})
(1/N1)[2. (N-- 2)[. 1. (-- 1)(N-- 2)}(13-/--)
--2(N--2)/{N(N--1)} (1 +/2 ).

And lira --2(N--2)/[N(N--1)} (1+2)--0. Hence the desired coefficient
is 0.
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Finally let’s obtain the coefficient of the same state constructed
hby the form l]={a (k)/3}(O(k))evO in which only two a’(k)are

of the state ,{a’(k)/j}annihilation operators. Consider the set
@(0(k))4=0 such that only two annihilation operators are always
contained in this formula and the operators a(k)/j are always related
to first (N--4), k of the above sequence.

Then ,,,.C({l(41-l,k.,k), 0(for the other k)},
--(N-- 4){15+2(N--5)}/N(N-- 1)(N-- 2)(N-- 3).

lim (N--4){15-2(N--5)}/N(N--1)(N--2)(N--3)-O. Hence the desired

coefficient is 0. From the iteration of the same discussion, we obtain

the component
The above results depend on the rule of the decision of the

coefficient. Perhaps this situation will be related to the sequences
which is a part of 6. Because is considered as a condensation of
infinitely many various properties 2. At last, let’s investigate the
meaning of the component I-I_=,{b(a’(k)a’(k.)dk/j}(O(k)).

Let’s decompose (f) in the following form: (fn)--/dE)(),
where lira fn--6. SO, exp i(f)--[ddEo,)(). From the following

expample, it seems to us that this compornent is related to --+_
and the limit of the sequence {E)()}. About this problem we will
give more precise, discussion in another paper.

Example 3. Choose the generalized function (2) =0,0,0.) as the
function fi

Then exp i(f)-=o(i’/n!) [,k=,,,,.(a+(k)+a(k))] for non
negative integer k, k., ka.

The phase of the state appearing in 1-I%{a(k)/j}@(O(k)) is in-
finite. Specially, we can also construct the state i(l(k)) which is
the component of the state exp i((2)a/=0,0,0))(0(k)). From Examples
2 and 3 we see the following two facts:

(1) the various relations (about to singularity) between the oper-
ator valued distribution (f) and the singular function (x) through
a sort exponential function.

(2) the possibility to be related to the field with interaction by
exp i(f) using the generalized singular testing function f.
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