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84. C* Algebra and its Extension as the Set of Observables

By Hideo YAMAGATA
(Comm. by Kinjir KUNUGI, M.J.A., June 12, 1964)

1. Introduction. The operator A having the bounded usual
expectation value (, A} for any two states q) and is a bounded
operator.

These bounded operators construct C* algebra which is considered
as the set of observables. It seems to us that the name of obser-
vables is derived from the reason such that it has always bounded
usual expectation value. (Namely, it can be observed.)

On the other hand the most of the quantities appearing in
quantum field theory are unbounded operators such as field function,
creation operator and annihilation operator etc. The set of unbounded
operators is also investigated by John Von Neumann 2, 3. But
the topology to give the relation between the bounded operators and
the unbounded operators is not to be seen in his work. Using spectral
decomposed form we can obtain the series of bounded operators
approached to the self adjoint unbounded operator. But it is difficult
to treat concretely the unbounded operators using above method. To
treat unbounded operators concretely, weak closure of the set of
bounded operators is used by R. Kastler and K. Haag in 1. But
his topology is too strong to extend the set of observables. Using
the weak topology related to a fixed dense subspace, this difficulty
is eliminated temporarily and unnaturally 3.

In this paper, we show the defect of extension in 1, and extend
truely the set of observables by using E. R. Integral 4, considering
the various methods.

2. Observable. Abstruct C* algebra is the essential tool of
axiomatic relativistic quantum field theory 1. At the first step,
let’s show the construction of it.

Let B denote the sets contained in 4 dimensional Minkovski
space. Let I(B) denote C* algebra related to B.

I(B) has the following properties:
(1) To every relative compact open set B, one ?/(B) is corre-

sponded.
(2) If B1 contains B2, then I(B1) contains ?I(B.).
(3) If B and B. are completely space like, then :[(B) and I(B)

are mutually commutative.
Let ; denote the completion of (_J2(B) in quasi norm. is

evidently C* algebra.
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4 ?: is the Lorentz covariant space.
(5) is primitive.
Let (C) denote the sub-Hilbert space of Von Neumann’s direct

product space whose bases are consisted of the states 1-I(R)(n)=
l-Ika(k)"k). ((0), where n(k) is the non-negative integer valued
function of k. Namely, the continuous representation is not contained
in this space.

Let R(?I) denote the representation of l by the space of bounded
operators defined on (C).

Using this representation the expectation value (A)=(%A)
is defined.

For a fixed A contained in R(I) and for any pair (, .)of the
elements in (C), (,A%) is bounded and defined. But, for A not
contained in R(?;[) there is a pair (, %.) of the elements in Y3 such
that (, A%) constructed from this pair is not bounded or is ot
defined. Using the self adjoint operator a+(0)+a(0) which is one
term of the well-known representation of the field function (x),
let’s show this aspect by two examples. Our purpose of this paper
is to avoid this difficulty.

Example 1. Suppose that .Ik(’tr(nk) is direct product of the
following element (n,) in

(1) (nk)----F(0k) for k4=0,
2 (no)=_:=o(1/(n+ 1)/)?(no).

Here, ?(n0) is the element in 230 with norm 1 having the orthogonality
for different n.

This state can be decomposed in
,::0(1/(n+ 1)/*)(YI**o (R) (0,)) (R) (no).

Let a/(O) and a(O) denote the operators satisfying the relations
a (0)(I],o (R) q(0,)) (R) (?(no) /-t-- 1. (H,:o (R) (f(0,)) (R)(n+ lo),
a(0)(H,o (R) (?(0,)) (R) (f(no):4-. ([I**o (R) (0,)) (R) (n-- lo).

Then
n (R)e(o))(R)e(no)(a/ (O) +a(O)) .=o(1/( -- 1)/)(1-Io::(l/n/+(n+ 1)’/i(n+2)/)(H,o@(0)) F(no)

+ (1/2/)(H,o@(0))@(0o).
(H@(n), (a (0) + a(0))H@(n))

1/2/+= rln/+(n+ l)l//(n+2)/)/(n+ l)S/--
Example 2. Suppose that @(n) is direct product of the

following element (n) in :
() (n)-(o) for k#0,

3/2 (no)--7=o(--1)"(1/(n+l) )?(no).
Then

(H (n), (a (o) +a(O))H (n))
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,=1( 1) 1(1/nl/4+ (n+ 1)1/2/(n+ 2)3/4)/(n -t- 1)3/4-1/2/4,
where I-l(R)(n) is the state defined in Example 1.

In spite of the above examples, the use of C* algebra /as the
set of observable is not necessary suitable, because the usual field
functions are not bounded operators.

Hence the extension of the concept of observables is needed.
For this purpose Von Neumann construct the set of operators X

such that XiR(t). Namely, X is the set of all operators which are
commuted with any unitary operators contained in the commutant
R(I)’. The purpose of this paper is to find the constructing method
of X from R() 3], E7].

For the extension of the set of observables, there are two sorts
of different methods. Let’s show them. Suppose that the expectation
value (, A.) is defined for a pair (, .) contained in D D.((C) (C)),
namely D1 D. is the domain of (, A.).

(1) Take suitable dense subsets D and D. in . And let’s
define the observables as follows:

The set of observables is the set of A satisfied the condition such
that (, A) is finite and definite for any pair (, .)e DID..
Here, the unique determination of D D. is an important problem.
(Hence Von Neumann favors the factor of type II.) [3

For example, D--D.--{.la 1-I(R)(n); n is bounded for any
fixed k}. Then, the creation operator, the annihilation operator and
9(x).p(x) are considered as the observables. Here 9(x) is a field
function and p(x) is the element in C0. Prof. K. Kunugi has showed
the axiom based on the case (1) at Kanseigakuin University. But
the case (2) is more suitable than the case (1), because it can obtain
a value (, A) for any pair (, .) (not necessarily finite).

2 Let’s take D1-- D.-- (C).
The set of observables is the set of A such that for any e(C)

and .e(C) (, A.) is defined by using some rule of the choice of
conditional convergent series. To determine its rule, E. R. Integral
investigated by Prof. K. Kunugi and others is most suitable, because
we can connect to the observation theory by it.

If we use distribution’s theory instead of E. R. Integral, the
singularity can be fully avoided, but the connection to the observation
theory is not satisfied. In 4 we show this.

:. Weak extension. In 1 extension of R(it) by using "weak
topology" is obtained, because-"weak topology" can be related to the
observation theory. But if we regard the weak topology used by R.
Kastler and K. Haag as the ordinary one, it seems to us that by
using it we cannot extend observables to useful direction. Hereafter,
we show this.
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At the first step let’s define the ordinary weak topology. Suppose
that A is contained in R(I), and (i-1, 2,..., n) are contained
in , s is an arbitrary fixed positive number and n is an arbitrary
fixed positive integer.

Definition 1. 1) The weak topology r (in 1) is one defined by
using the family of all possible neighbourhoods {U(A; ,-.., n,)} such
that U(A; ,..., fn, )- {X; X@ R(?I), (A)--(Z) < s, i-- 1,.-., n}.

2) The weak topology r. is one defined by using the family of
all possible neighbourhoods {U(A; ,...,, ,,..., fZ, )} such that

IX; Xe R(;0, (A) (q, Xff) (, i- 1,..., n}.
Let a and fl denote the non negative numbers such that

a--sup (x, Ay)
fl--sup (x, Ax)

Here x, y are contained in and A is a bounded operator. We obtain
the following

Theorem 1. fl a__< 2fl [8].
Proof. /=<a is evident.
Sinee

(x, Ay)-(1/4){(x+y, A(x+y))--(x--y, A(x--y))
+i(x+iy, A(x+iy))--i(x--iy, A(x--iy))},

it follows that
(x, Ay) <:. (1/4)fl{ II x/y II ./

Hence a =< 2ft.
Let P denote a field operator having a state with infinite length

in its range (from unit vectors) such as a+(k), a(k) a/a(k) or e(x)*p(x)
defined in 2.

Theorem 2. {r. closure of R()} does not contain P.
Proof. From the character of P, we can select an orthonormal

set [Un} {HI )(n)} such that I[ Pu ]] >= n’ and Pu 2_ Pu for m 4= n.
(We can prove this theorem without Pu+/-Pu for m#n.)

Let f(n) denote the function f(n)-]] Pu I[ >=n* defined on the set
on n. The state -C=(uJn) contains in (C).

Construct -,%(Pun/n[[Pu[I) contained in (C), then
(, p4f} l>:=,n/n--]=n2- oo.

From the character of P we can understand (, P}]- oo naturally.
Hence P is not contained in closure of R().

Theorem 3. [ri closure of R(?/)} does not contain P.
Proof. Since P is a field operator, from the proof of Theorem 2

it follows that there exist , with norm 1 such that I(ff, P}I- oo.

From the proof of Theorem 1, there exist e(C) with norm I such
that I(, PC}I-- .
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Hence P is not contained in {r closure of R()}.
4. The use of the conditional convergence (E. R. Integral).
(1) Let ((R)) denote the testing function’s spaee;

((R))-[(n); lira nl(n) l-0 for any k>0}.

Let’s represent (4"x, A,) by the functional defined on ((R))((R)).
For aot--._an(k)an(k)Ik(arl(nk) and . :]<)l-I(R) .(n),
we define

and
2(2) X--,,(k(fl,(k.(-]kn(k)))I-i (R) 4.(nk).

Here n(k) is the non negative integer valued function of k and, 2 are contained in ((R)).
Then, (go, Ag%) is represented by functional

Then suitable observable is A such that this functional can be defined
for any pair (,

(2) The observable by E. R. Integral. Let’s decompose and
C ,k. in k-C(l)p and .=-l, ) where --1-Ik(R)p(n)). Further-

more, suppose that A,/. can be decomposed in A4.=CA. Then,
(%,

If A satisfies the following conditions, we say that A is contained
in the set of extended observables.

(a) For any s(C), C[ are finite and fixed for all i.
() _-x-’((- is defined by the following meaning. (From

Example 1, finiteness is omitted.) Let’s consider the bounded set of k.
Using the function n(k) (i-1,..., n), construct the sequence

n)(k), n)(k), such that z_=, )(k)<==n (k) for < m.
Furthermore, construct the following function f():

f(x)=2 C(,)(k) for <xl
f(x)- 2 C,.)(k) for (.)<x< 1/2,

For Example, it is easily seen that the operator a(O) +a(O) or
(x),p(x) is the extended observable, when p(x) contains in (Z).

Let’s show the conditions of E. R. Integrable.
V(F, ; f)--{g(x); g(x)-- f(x)e V(F, ; 0)}.

V(F, ,; 0) is the set of step functions g(x)-- p(x)-+- r(x) satisfied the
conditions;

(A) r(x) 0 in F. (B) Ip(x) ldx< 2 -’, (C) r(x)dxl< 2
where FC [0, 1.
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If we can select the sequence such that
a V(FI, ,; .fl) V(F., ,2; ft.) --’",
b f(x)- limf(x),

(d) k{mes 0, l--Fn+}_>mes {[_0, l--Fn} for positive integer

and (e) there exists a function (n) with the properties 1)
2) lim (n)-0, and 3) on E[0, 1 satisfying the condition

fx-’gx<mes {E0, l--Fn}, f lA(x)lgx<_O(n)

for fixed l, then f(x) is E. R. Integrable E4.
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