81. On a Definition of Singular Integral Operators. I

By Hitoshi Kumano-go
Department of Mathematics, Osaka University
(Comm. by Kinjirô Kunugi, M.J.A., June 12, 1964)

Introduction. The theory of singular integral operators of A. P. Calderón and A. Zygmund [1] has been applied to the various problems in partial differential equations, since A. P. Calderón [2] succeeded in proving the general theorem for the uniqueness of solutions of the Cauchy problem by using this theory. S. Mizohata in the notes [7], [8], and [9] proved the many interesting theorems for the uniqueness by modifying the notion of singular integral operators, M. Yamaguti [12] applied these operators to the existence theorem of solutions of the Cauchy problem for hyperbolic differential equations and M. Matsumura [6] applied to the existence and non-existence theorems of local solutions of the general equations.

In the note [4] we introduced singular integral operators of class C_{m}^{m} and proved the theorems of [7] and [8] by a unified method, and also in [5] we generalized the theorem of [9] by applying the operators of this class.

In the present note we shall give a definition of singular integral operators which governs operators of class $C_{\mathfrak{m}}^{m}$, and prove that the main theorems relating to operators of [1] hold for the present operators. In this theory we do not require the homogeneity of the symbol $\sigma(H)(x, \eta)$ in η (Definition 4), but assume the analyticity in η. The technique of almost all the proofs is based on [10] and [12], and the exposition is self-contained. I thank here my colleague K . Ise for helpful discussions.

1. Definitions and lemmas. Let $x=\left(x_{1}, \cdots, x_{n}\right)$ be a point of Euclidean n-space $R_{x}^{n}, \xi=\left(\xi_{1}, \cdots, \xi_{n}\right)$ be a point of its dual space E_{ξ}^{n} and $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ denote a real vector whose elements are nonnegative integers.

We shall use the notations:

$$
\begin{aligned}
& \alpha!=\alpha_{1}!\cdots \alpha_{n}!,|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, x \cdot \xi=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}, \\
& D_{x}=\left(D_{x_{1}}, \cdots, D_{x_{n}}\right)=\left(\partial / \partial x_{1}, \cdots, \partial / \partial x_{n}\right), x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, D_{\xi}=(\cdots, \text { etc. }
\end{aligned}
$$

The terminology employed is that of L. Schwarz [11].
The Fourier transform $\mathfrak{F}[u](\xi)=\widehat{u}(\xi)$ of a function $u \in L_{x}^{2}$ is defined by

$$
\tilde{F}[u](\xi)=\frac{1}{\sqrt{2 \pi}} \int e^{-\sqrt{-1} x \cdot \xi} u(x) d x
$$

We have, then, for $u \in \mathcal{S}_{x}{ }^{1)}$ and $\gamma \in \mathcal{S}_{x}^{\prime}$

$$
\begin{equation*}
\widehat{\gamma * u}=(2 \pi)^{n / 2} \widehat{u} \widehat{\gamma}, \tag{1.1}
\end{equation*}
$$

and for $a(x) \in \mathscr{B}_{x}$ the expansion

$$
\begin{equation*}
a(y)=\sum_{1 \leqq|\alpha| \leq l-1} \frac{(y-x)^{\alpha}}{\alpha!} D_{x}^{\alpha} a(x)+\sum_{|\alpha|=l}(y-x)^{\alpha} a_{\alpha}(x, y) \tag{1.2}
\end{equation*}
$$

where $a_{\alpha}(x, y) \in \mathscr{B}\left(R_{x}^{n} \times R_{y}^{n}\right)$ and

$$
\begin{equation*}
\left|D_{x}^{\beta} D_{y}^{\beta^{\prime}} a_{\alpha}(x, y)\right| \leqq C_{k} \sum_{\left|\beta^{\prime}\right|=k} \sup _{x}\left|D_{x}^{\beta^{\prime \prime}} \alpha(x)\right|, \quad k=|\alpha|+|\beta|+\left|\beta^{\prime}\right| . \tag{1.3}
\end{equation*}
$$

Definition 1. We call a distribution $\lambda \in \mathcal{S}^{\prime}$ is of type $(\rho, \tau), \rho$, $\tau>0$, if $\hat{\lambda}(\xi)$ is a function which is positive and infinitely differentiable in $E_{\xi}^{n}-\{0\}$, and satisfies

$$
\begin{align*}
\text { i) } & |\xi|^{1 / \tau} \leqq C(\hat{\lambda}(\xi)+1) \leqq C^{\prime}\left(|\xi|^{1 / \rho}+1\right) \\
\text { ii) } & \left|D_{\xi}^{\alpha} \widehat{\lambda}(\xi)\right| \leqq C_{\alpha} \widehat{\lambda}(\xi)^{1-\rho|\alpha|} \quad \text { for }|\xi| \geqq 1 . \tag{1.4}
\end{align*}
$$

Remark. If $\hat{\lambda}(\xi)$ is bounded in a neighborhood of the origin, then the second inequality of i) is derived from ii) by setting $|\alpha|=1$.

Now we define a Hilbert space $\mathfrak{S}_{p}(-\infty<p<+\infty)$ by

$$
\begin{equation*}
\mathfrak{H}_{p}=\left\{u \in \mathcal{S}^{\prime} ; \widehat{u}, \text { function }\|u\|_{p}^{2}=\int(1+\widehat{\lambda}(\xi))^{2 p}|\widehat{u}(\xi)|^{2} d \xi<\infty\right\} . \tag{1.5}
\end{equation*}
$$

Clearly $\mathfrak{S}_{0}=L^{2}$. In this case we write $\|u\|_{0}=\|u\|_{L^{2}}$ or simply $\|u\|$.
Definition 2. A convolution operator $\Gamma: \mathcal{S}_{x} \underset{\text { into }}{\longrightarrow} \mathcal{S}_{x}$ is called of class $\boldsymbol{T}(p)=\boldsymbol{T}(p, \lambda),-\infty<p<+\infty$, if Γ is defined by $\Gamma u=\gamma * u, u \in \mathcal{S}$, where $\gamma \in \mathcal{S}^{\prime}$ and $\hat{\gamma}$ satisfies

$$
\begin{equation*}
\text { i) } \operatorname{supp} \widehat{\gamma}(\xi)^{2)} \subset E_{\xi}^{n}-\{0\} \tag{1.6}
\end{equation*}
$$

ii) $\widehat{\gamma}(\xi) \in C^{\infty}\left(E_{\xi}^{n}\right)$ and $\left|D_{\xi}^{\alpha} \widehat{\gamma}(\xi)\right| \leqq C_{r, \alpha} \widehat{\lambda}(\xi)^{p-\rho|\alpha|}$ for $\xi \neq 0$.

Then, by (1.1) we can write

$$
\begin{equation*}
\Gamma u=\int e^{\sqrt{-1} x \cdot \xi} \widehat{\gamma}(\xi) \widehat{u}(\xi) d \xi, u \in \mathcal{S}_{x} \tag{1.7}
\end{equation*}
$$

Definition 3. A convolution operator $\Lambda^{\sigma}(\sigma \geqq 0)$ associated with λ is defined by

$$
\begin{equation*}
\Lambda^{\sigma} u=\int e^{\sqrt{-1} x \cdot \xi} \hat{\lambda}(\xi)^{\sigma} \widehat{u}(\xi) d \xi, \quad u \in \mathfrak{S}_{\sigma} \tag{1.8}
\end{equation*}
$$

Next we assume there exists a transformation

$$
T_{s}: E_{\xi}^{n} \ni \xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \longrightarrow \eta=\left(\eta_{1}, \cdots, \eta_{s}\right) \in E_{\eta}^{s} \text { for } \xi \neq 0
$$

such that $\eta_{j}(\xi), j=1, \cdots, s$ are bounded functions belonging to C^{∞} in $E_{\varepsilon}^{n}-\{0\}$ and satisfy
(1.9) $\quad\left|D_{\xi}^{\alpha} \eta_{j}(\xi)\right| \leqq C_{\alpha} \widehat{\lambda}(\xi)^{-\rho|\alpha|} \quad$ for $\quad|\xi| \geqq 1$.

We must remark, in general $s \neq n$.
Lemma 1. For $\Gamma \in \boldsymbol{T}(p)$ we define $D_{x}^{\beta} x^{\alpha} \Gamma$ by $\left(D_{x}^{\beta} x^{\alpha} \Gamma\right) u=\left(D_{x}^{\beta} x^{\alpha} \gamma\right) * u$, $u \in \mathcal{S}_{x}$. Then we have

[^0]i) $\quad x^{\alpha} \Gamma \in \boldsymbol{T}(p-\rho|\alpha|)$
ii) If $p \geqq 0$ and $k \geqq p /(2 \rho)$, then $(1-\Delta)^{-k} \Lambda^{p}=\Lambda^{p}(1-\Delta)^{-k}$ is extended to a bounded operator in L_{x}^{2}.
iii) If $|\alpha|>\{(n+|\beta|) \tau+p\} / \rho$, then $D_{x}^{\beta} x^{\alpha} \gamma$ is a function of L_{x}^{1} and we have
\[

$$
\begin{equation*}
\left\|D_{x}^{\beta} x^{\alpha} \gamma\right\|_{L_{x}^{1}} \leqq C_{n, \beta} \operatorname{Max}_{\left|\alpha^{\prime}\right| \leqq n+2}\left\|(1+|\xi|)^{|\beta|} D_{\xi}^{\alpha^{\prime}+\alpha} \widehat{\gamma}(\xi)\right\|_{L^{1}} . \tag{1.10}
\end{equation*}
$$

\]

We can, therefore, extend $D_{x}^{\beta} x^{\alpha} \Gamma$ to a bounded operator in L_{x}^{2} and have (1.11)

$$
\left\|\left(D_{x}^{\beta} x^{\alpha} \Gamma\right) u\right\|_{L^{2}} \leqq\left\|D_{x}^{\beta} x^{\alpha} \gamma\right\|_{I^{1}} \cdot\|u\|_{L^{2}}
$$

Proof. i) and ii) are clear by (1.6) and (1.4). iii) As $D_{r}^{\beta} x^{\alpha} \gamma=$ $(2 \pi)^{-n / 2} \int e^{\sqrt{-1} x \cdot \xi} \sqrt{-1^{|\alpha|+|\beta|} \xi^{\beta}} D_{\xi}^{\alpha} \hat{\gamma}(\xi) d \xi$, we have

$$
\begin{gather*}
I(x) \equiv\left|\left(1+|x|^{2}\right)^{[n / 2+1]} D_{x}^{\beta} x^{\alpha} \gamma\right| \\
\leqq(2 \pi)^{-n / 2} \int\left|\left(1-\Delta_{\xi}\right)^{[n / 2+1]}\left\{\xi^{\beta} D_{\xi}^{\alpha} \hat{\gamma}(\xi)\right\}\right| d \xi \tag{1.12}\\
\leqq C_{n, \beta} \operatorname{Max}_{\left|\alpha^{\prime}\right| \leqq n+2} \int(1+|\xi|)^{|\beta|}\left|D_{\xi}^{\alpha \alpha^{\prime}+\alpha} \widehat{\gamma}(\xi)\right| d \xi .
\end{gather*}
$$

From ii) of (1.6) and i) of (1.4) we have

$$
\left|D_{\xi}^{\alpha^{\prime}+\alpha} \widehat{\gamma}(\xi)\right| \leqq C_{r, \alpha^{\prime}, \alpha}|\xi|^{\left[p-\rho\left[\left|\alpha^{\prime}\right|+|\alpha|\right)\right\} / .} .
$$

As $\left\{p-\rho\left(\left|\alpha^{\prime}\right|+|\alpha|\right)\right\} / \tau<-n-|\beta|$ by the assumption,

$$
(1+|\xi|)^{|\beta|}\left|D_{\xi}^{\alpha^{\prime}+\alpha} \widehat{\gamma}(\xi)\right| \in L_{\xi}^{1} .
$$

Hence $I(x)$ is bounded and this shows $D_{x} x^{\alpha} \gamma \in L_{x}^{1}$. From a well-known formula

$$
\begin{equation*}
\|f * g\|_{L^{p}}=\|f\|_{L^{1}} \cdot\|g\|_{L^{p}}, f \in L^{1}, g \in L^{p} \quad(p \geqq 1) \tag{1.13}
\end{equation*}
$$

we get (1.11).
Now, for $\eta^{(0)} \in E_{\eta}^{s}$ and a positive number δ we denote

$$
\begin{aligned}
\mathscr{D}\left(\eta^{(0)}, \delta\right) & =\left\{\eta \in E_{\eta}^{s ;} ;\left|\eta_{j}-\eta_{j}^{(0)}\right|<\delta, j=1, \cdots, s\right\}, \\
\mathscr{D}^{*}\left(\eta^{(0)}, \delta\right) & =\left\{\zeta \in \boldsymbol{C}_{\xi}^{s ;} ;\left|\zeta_{j}-\eta_{j}^{(0)}\right|<\delta, j=1, \cdots, s\right\}
\end{aligned}
$$

where $C_{\zeta}^{s}\left(\supset E_{\eta}^{s}\right)$ denote a complex s-dimensional space.
Definition 4. We call H a singular integral operator of class $\boldsymbol{S}\left(\lambda, T_{s}\right)$ with the symbol $\sigma(H)(x, \eta)$, if the following conditions are satisfied.

There exist positive numbers $\delta<\delta^{\prime}$ and $\eta^{(i)} \in E^{s}(i=1, \cdots, k)$ for some k such that $\sigma(H)(x, \eta)$ is written as

$$
\sigma(H)(x, \eta)=\sum_{i=1}^{k} h_{i}(x, \eta) \alpha_{i}(\eta)
$$

where $\alpha_{i}(\eta) \in C_{0}^{\infty}$ in $\mathscr{D}\left(\eta^{(i)}, \delta\right)$ and $h_{i}(x, \eta)$ are extended to functions of \mathscr{B} in $R_{x}^{n} \times \mathscr{D}^{*}\left(\eta^{(i)}, \delta^{\prime}\right)$ and analytic in $\mathscr{D}^{*}\left(\eta^{(i)}, \delta^{\prime}\right)$ for any fixed $x \in R_{x}^{n}$. Then, Hu is defined by

$$
H u=\frac{1}{\sqrt{2 \pi^{n}}} \int e^{\sqrt{-1} x \cdot \xi} \sigma(H)(x, \eta(\xi)) \widehat{u}(\xi) d \xi, u \in L_{x}^{2}
$$

Since $h_{i}(x, \eta)(i=1, \cdots, k)$ are analytic in η, by Cauchy's formula we can extend it as

$$
h_{i}(x, \eta)=\sum_{\nu} a_{i}^{(\nu)}(x)\left(\eta-\eta^{(i)}\right)^{\nu}, \nu=\left(\nu_{1}, \cdots, \nu_{s}\right)
$$

where

$$
\begin{align*}
\left|a_{i}^{(\nu)}(x)\left(\eta-\eta^{(i)}\right)^{\nu}\right| \leqq & \sup _{R^{n} \times \mathscr{D}^{*}\left(\eta^{(i)}, \delta^{\prime}\right)}\left|h_{i}(x, \zeta)\right| \cdot\left(\frac{\delta}{\delta^{\prime}}\right)^{|\nu|} \tag{1.14}\\
& \text { for }(x, \eta) \in R^{n} \times \mathscr{D}\left(\eta^{(i)}, \delta\right) .
\end{align*}
$$

Hence, if we define convolution operators $H_{i}^{(\nu)}$ by

$$
\begin{equation*}
\widehat{H_{i}^{(\nu)} u}(\xi)=h_{i}^{(\nu)}(\eta(\xi)) \widehat{u}(\xi) \quad \text { where } \quad h_{i}^{(\nu)}(\eta)=\left(\eta-\eta^{(i)}\right)^{\nu} \alpha_{i}(\eta), \tag{1.15}
\end{equation*}
$$

we can write $H u$ as

$$
\begin{equation*}
H u=\sum_{i=1}^{k} \sum_{\nu} a_{i}^{(\nu)} H_{i}^{(\nu)} u, \tag{1.16}
\end{equation*}
$$

and also by (1.9) we have

$$
\begin{equation*}
H_{i}^{(\nu)} \Gamma=\Gamma H_{i}^{(\nu)} \in \boldsymbol{T}(p) \quad \text { for } \quad \Gamma \in \boldsymbol{T}(p) . \tag{1.17}
\end{equation*}
$$

Definition 5. Let R_{1} and R_{2} be bounded operators in L_{x}^{2}. We write $R_{1} \stackrel{\theta}{=} R_{2}, \theta>0$, if for any $\Gamma \in \boldsymbol{T}(p)(-\infty<p<+\infty)$ and $\sigma_{0} \geqq 0$ we can write

$$
\begin{aligned}
& \Gamma\left(R_{1}-R_{2}\right)=\sum_{j=1}^{l} H_{j} \Gamma_{j}+K_{\sigma_{0}} \\
& \left(R_{1}-R_{2}\right) \Gamma=\sum_{j=1}^{\nu} H_{j}^{\prime} \Gamma_{j}^{\prime}+K_{\sigma_{0}}^{\prime}
\end{aligned}
$$

for sufficiently large l and l^{\prime} depending on Γ and $\sigma_{0} \geqq 0$, where H_{j}, $H_{j}^{\prime} \in \boldsymbol{S}\left(\lambda, T_{s}^{\prime}\right), \Gamma_{j}, \Gamma_{j}^{\prime} \in \boldsymbol{T}(p-\theta)$, and $K_{\sigma_{0}}, K_{\sigma_{0}}^{\prime}$ are bounded operators of order $\sigma_{0}{ }^{3}{ }^{3}$ If we can take $l=l^{\prime}=0$ for any Γ and $\sigma_{0} \geqq 0$, we write $R_{1} \stackrel{\infty}{=} R_{2}$.

Lemma 2. Let Ψ be a bounded operator in L_{x}^{2} defined by $\widehat{\Psi u}(\xi)=$ $\psi(\xi) \hat{u}(\xi)$ where $\psi(\xi)$ is a bounded function which has compact support. Then, $\Psi \stackrel{\infty}{\equiv} 0$.

Proof. It is clear as $\Lambda^{\sigma_{1}} \Gamma \Psi \Lambda^{\sigma_{2}}$ and $\Lambda^{\sigma_{1}} \Psi \Gamma \Lambda^{\sigma_{2}}$ are bounded operators in L_{x}^{2} for any $\sigma_{1}, \sigma_{2} \geqq 0$ and $\Gamma \in \boldsymbol{T}(p)$.

Lemma 3. Let $a(x) \in \mathscr{B}_{x}$ and $\Gamma \in \boldsymbol{T}(p),-\infty<p<+\infty$. Then for any $\sigma_{0} \geqq 0$ we have the representation

$$
\begin{align*}
\Gamma a-a \Gamma & =\sum_{1 \leq|\alpha| \leq l-1} \frac{(-1)^{|\alpha|}}{\alpha!} D_{x}^{\alpha} a \cdot\left(x^{\alpha} \Gamma\right)+K_{\sigma_{0}}^{(1)} \tag{1.18}\\
& =-\sum_{1 \leq|\alpha| \leq l-1}-\frac{1}{\alpha!}\left(x^{\alpha} \Gamma\right) D_{x}^{\alpha} a+K_{\sigma_{0}}^{(2)}
\end{align*}
$$

for every $l>\operatorname{Max}[\{(4 k+n) \tau+p\} / \rho, 0]$ with $k=\left[\sigma_{0} /(2 \rho)+1\right]$, where $K_{\sigma_{0}}^{(i)}(i=1,2)$ are of order σ_{0} and

$$
\begin{align*}
& \left\|\Lambda^{\sigma_{1}} K_{\sigma_{0}}^{(i)} \Lambda^{\sigma_{2}}\right\| \\
& \leqq C_{\sigma_{0}, l_{l \leqq|\alpha| \leqq l+n+2}} \operatorname{Max}\left\|(1+|\xi|)^{4 k} D_{\xi}^{\alpha} \widehat{\gamma}(\xi)\right\|_{L^{1}} \operatorname{Max}_{|\beta| \leq 4 k+l}\left|D_{x}^{\beta} a\right| \tag{1.19}\\
& \\
& \quad\left(i=1,2,0 \leqq \sigma_{1}, \sigma_{2} \leqq \sigma_{0}\right) .
\end{align*}
$$

Proof. Using (1.2) and remarking $x^{\alpha} \gamma \in L_{x}^{1}$ for $|\alpha|=l$ we have for $u \in \mathcal{S}_{x}$
3) An operator K in L_{x}^{2} is called of order σ_{0}, if $\Lambda^{\sigma_{1}} K \Lambda^{\sigma^{2}}\left(0 \leqq \sigma_{1}, \sigma_{2} \leqq \sigma_{0}\right)$ are bounded operators in L_{x}^{2}. We denote such an operator by $K \sigma_{0}$ with a suffix σ_{0}.

$$
\begin{aligned}
(\Gamma a-a \Gamma) u= & \gamma_{y}(\{a(x-y)-a(x)\} u(x-y)) \\
= & \sum_{1 \leqq|\alpha| \leqq l-1} \frac{(-1)^{|\alpha|}}{\alpha!} D_{x}^{\alpha} a(x) \cdot\left(y^{\alpha} \gamma_{y}\right)(u(x-y)) \\
& +(-1)^{l} \sum_{|\alpha|=l} \int\left(x^{\alpha} \gamma\right)(x-y) \cdot a_{\alpha}(x, x-y) u(y) d y \\
\equiv & I_{1} u+I_{2} u
\end{aligned}
$$

It is easy to see

$$
I_{1} u=\sum_{1 \leqq|\alpha| \leq l-1} \frac{(-1)^{|\alpha|}}{\alpha!} D_{x}^{\alpha} a \cdot\left(x^{\alpha} \Gamma\right) u
$$

For $k=\left[\sigma_{0} /(2 \rho)+1\right]$ if we write $\Lambda^{\sigma_{1}} I_{2} \Lambda^{\sigma_{2}} u$ as

$$
\Lambda^{\sigma_{1}} I_{2} \Lambda^{\sigma_{2}} u=\Lambda^{\sigma_{1}}(1-\Delta)^{-k}\left\{(1-\Delta)^{k} I_{2}(1-\Delta)^{k}\right\}(1-\Delta)^{-k} \Lambda^{\sigma_{2}} u,
$$

then, by ii) of Lemma 1 we may only prove the boundedness of $J=(1-\Delta)^{k} I_{2}(1-4)^{k}$. $|(J u)(x)|$

$$
\begin{aligned}
& \leqq\left|\left(1-U_{x}\right)^{k} \sum_{|\alpha|=l} \int\left(x^{\alpha} \gamma\right)(x-y) \cdot a_{\alpha}(x, x-y)\left(1-\Delta_{y}\right)^{k} u(y) d y\right| \\
& =\left|\int\left(1-\Delta_{x}\right)^{k}\left(1-U_{y}\right)^{k}\left\{\left(x^{\alpha} \gamma\right)(x-y) \cdot a_{\alpha}(x, x-y)\right\} u(y) d y\right| \\
& \leqq C_{k} \operatorname{Max}_{\left|\beta^{\prime}\right|+\left|\beta^{\prime}\right|=4 k} \sup _{x, y}\left|D_{x}^{\beta^{\prime}} D_{y}^{\beta^{\prime \prime}} a_{\alpha}(x, y)\right| \operatorname{Max}_{|\beta| \leq 4 k} \int\left|\left(D_{x}^{\beta} x^{\alpha} \gamma\right)(x-y)\right||u(y)| d y .
\end{aligned}
$$

Here we remark $D_{x}^{\beta} x^{\alpha} \gamma \in L_{x}^{1}$ by iii) of Lemma 1 and

$$
|\alpha|=l>\{(4 k+n) \tau+p\} / \rho .
$$

Hence we have by (1.3) and (1.13)

$$
\|(J u)(x)\|_{L^{2}} \leqq C_{k, l} \operatorname{Max}_{|\beta| \leq 4 k+l}\left|D_{x}^{\beta} a\right| \cdot \operatorname{Max}_{|\beta| \leqslant 4 k}\left\|D_{x}^{\beta} x^{\alpha} \gamma\right\|_{L^{1}} \cdot\|u\|_{L^{2}}
$$

This shows that the first equality of (1.18) holds. The second is obtained, if we expand $(a(x-y)-a(x))$ with the base $(x-y)$. Q.E.D.

Let $\left\{g^{0}\right\}$ be the set of lattice points in R_{x}^{n} and $\left\{a_{g^{0}}\right\}$ a set of functions of \mathscr{B}_{x} such that

$$
a_{g^{0}}(x) \in C_{0}^{\infty}\left(\mathscr{D}_{g^{0}, \delta}\right), \quad\left|D_{x}^{\alpha} a_{g^{0}}(x)\right| \leqq A_{0, k} \quad \text { for } \quad|\alpha| \leqq k
$$

where $\delta>0$ is a fixed constant and

$$
\mathscr{D}_{g^{0}, \delta}=\left\{x ;\left|x-g^{0}\right|<\delta\right\} .
$$

If we set $g=\varepsilon / \delta g^{0}$ and $a_{g}(x)=a_{\theta^{0}}(\delta / \varepsilon x)$, then

$$
\begin{equation*}
a_{g}(x) \in C_{0}^{\infty}\left(\mathscr{D}_{g, \delta}\right),\left|D_{x}^{\alpha} a_{g}(x)\right| \leqq A_{k} \varepsilon^{|\alpha|} \quad \text { for } \quad|\alpha| \leqq k \tag{1.20}
\end{equation*}
$$

Lemma 4 (S. Mizohata). Let $\left\{a_{g}\right\}$ be a set of functions of (1.20) and $\Gamma \in \boldsymbol{T}(p)$ where $0<p \leqq \rho$.

Then we have for every $0<\varepsilon<1$

$$
\begin{align*}
& \sum_{g}\left\|\left(\Gamma a_{g}-a_{g} \Gamma\right) u\right\|_{L^{2}} \tag{1.21}\\
& \leqq C_{l} \varepsilon^{-2 l} A_{l}^{2}\left\{\sum_{1 \leq|\alpha| \leq l-1} \sup _{\hat{\xi}}\left|D_{\xi}^{\alpha} \widehat{\gamma}(\xi)\right|^{2}+\sum_{|\alpha|=l}\left\|x^{\alpha} \gamma\right\|_{L^{2}}^{2}\right\}\|u\|_{L^{2}}^{2}
\end{align*}
$$

where $l=2 \operatorname{Max}\{[(n \tau+p) /(2 \rho)+1],[n / 4+1]\}$.
Proof. Set $I_{g} u=\left(\Gamma a_{g}-a_{g} \Gamma\right) u$. Then, by the similar way as the proof of Lemma 3 we have

$$
\begin{align*}
& \left|\left(I_{g} u\right)(x)\right| \\
& \leqq\left. C_{l} \varepsilon^{-2 l} A_{l \mid}^{2!}\left|\sum_{1 \leq|x| \leqq l-1}\right|\left(x^{\alpha} \Gamma\right) u(x)\right|^{2}+\sum_{|\alpha|=l}\left(\int\left|\left(x^{\alpha} \gamma\right)(x-y)\right||u(y)| d y\right)^{2} . \tag{2.22}
\end{align*}
$$

Here we remark $x^{\alpha} \gamma \in L_{x}^{1}$ by iii) of Lemma 1 and $\left|D_{x}^{\alpha} a_{g}\right| \leqq A_{l} \varepsilon^{l}$ for $|\alpha| \leqq l$. If $x \in \mathscr{D}_{g, 2 c}$, we have $a_{g}(x-y)=0$ for $|y| \leqq|x-g| / 2$.
Hence $a_{g}(x-y) /|y|^{l} \in C_{0}^{\infty}\left(R_{y}^{n}\right)$, so that we have

$$
\begin{aligned}
& \left|\left(I_{g} u\right)(x)\right|=\left|\left(\Gamma a_{g} u\right)(x)\right|=\left|\gamma_{y}\left(|y|^{l} a_{g}(x-y) /|y|^{l} \cdot u(x-y)\right)\right| \\
& \leqq C_{l}^{\prime} \frac{A_{0}}{|x-g|^{l}} \int\left|\left(|x|^{l} \gamma\right)(x-y)\right||u(y)| d y, x \notin \mathscr{D}_{g, 26} .
\end{aligned}
$$

Here we remark $|x|^{l}$ is a polynomial, as l is even number. Since $\sum_{g ;|x-g| \geq 0}|x-g|^{-2 l}=C_{n} \varepsilon^{-(2 l-n)}$ for $2 l>n$, we have

$$
\begin{equation*}
\sum_{g ; x \notin \mathscr{D}_{g, 2 \epsilon}}\left|\left(I_{g} u\right)(x)\right|^{2} \leqq C_{l}^{\prime \prime} A_{0}^{2} \varepsilon^{-2 l}\left\{\int\left(\left.|x|\right|^{l} \gamma\right)(x-y)| | u(y) \mid d y\right\}^{2} \tag{1.23}
\end{equation*}
$$

As the number of g such that $x \in \mathscr{D}_{g, 2 e}$ is finite and independent of ε, we see from (1.22) and (1.23) that (1.22) holds even if we replace $\left|\left(I_{g} u\right)(x)\right|^{2}$ by $\sum_{g}\left|\left(I_{g} u\right)(x)\right|^{2}$. Then, using $\sup _{\xi}\left|\widehat{x^{\alpha} \gamma}(\xi)\right|=\sup _{\xi}\left|D_{\xi}^{\alpha} \widehat{\gamma}(\xi)\right|<\infty$ for $0<p \leqq \rho$ and (1.13), we get (1.21).
Q.E.D.
(References are listed at the end of the next article, p. 378.)

[^0]: 1) \mathcal{S}_{x} denotes the class of rapidly decreasing functions, \mathcal{S}_{x}^{\prime} the class of distributions on \mathcal{S}_{x}, and \mathcal{B}_{x} the class of infinitely differentiable functions whose derivatives are all bounded.
 2) For a function $u(x)$, supp $u=$ the closure of $\{x ; u(x) \neq 0\}$.
