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110. On the Definition of Functional Integrals

By Hideo YAMAGATA
(Comm. by Kinjir5 KUNUGI, M.J.A., Sept. 12, 1964)

1. Introduction. Functional integral is one of the powerful
tool in quantum field theory or stocastic process [1-2. The trial to
define it exactly and naturally has been done by K. O. Friedrick,s [1.
But his definition is still restricted by the usual Hilbert space g.
Many definitions of it are given, but each of them is not sufficient
and we must show the more suitable new definition, because they
cannot describe the important integral skilfully. Therefore, the integral
of functions defined in the Hilbert space (or in its extension) is not
necessarily used in usual, though it is one of the powerful tools.

Here, let’s investigate precisely the definition in [1-2 and give
the generalized definition which is faithful to the following Example
1. Here, Example 1 is the most basic one showing the natural ex-
planation of this integral. Our method is one corresponding to the
continuous representation of states [5-6.

On the other hand, Feynman integral (a sort of singular functional
integral) is one of the important purpose of this research. We have
already succeed to define it by using E. R. Integral which is the most
general singular integral. For functional, this mild integral is effective
specially [7, [1.

In the next paper, we will show it. In this paper, we give the
relation between Feynman integral and our generalized definition for
preliminalies.

2. Definition of the functional integral. Let denote the
space of the real square integrable functions defined on the real axis.
(We may change to complex valued functions easily.)

Let f((s)) (for (s),--oo<s<-t-oo) denote the real valued func-
tional defined on g and I[f($(s)) denote the integral of f($(s)),

namely _r f ff dm((s)).

Here we show the most elementary example of the functional
integral, and give the generalized definition which is faithful to this
example.

Example 1. Let g denote the space of sequences [xx, x.,...}
with the property X’=]xl2 + oo. (For example, the sequence of
Fourier coefficients for some fixed base.)

I[f(x, x2,...) lim f... fl(1N2z a) exp {-- x/2f2}
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f(x, x,..., x, O,...)dx...dxn.

The definition in 1 is same as this Example I in essential point.
From now let’s show the essential point of Example I and compair

with the definition in [1. Let x denote the infinite demensional vector
[x,x.,...,x,...} with finite .norm and P(Rn) denote the following.
projection operator to the subspace R(C):

P(R)x= {x, x.,. ., x, 0,... }.
Let en denote the element of the base [0,..., 0, 1, 0,...} in which

only the n-th component is 1. P(R)x--X=(x, e}e. The essential
tool in Example 1 is this P(R). In [1 we use the following projec-
tion corresponding to this. Divide the real axis by finite points
i--0, 1,..., n} and construct the following orthonormal step function

in L;
l/(s--s2) for s e (s, s)(s) [o for the other s (i=1,..., n),

then P()(s)-- 2=((s), "(s)}(s).

f... f(1/z ex, {-I[f((s))] lim

ft... fl(1/J )" exp {--Z?=((s), p’>(s)}/2a} Xlim

x f(($(s), i=1, 2,...,
lim I[f($(s)). ( 2 )
D

If a tends to , then lim lim (Ja)"I,,[f((s)) tends to the

functional integral with respect to the ordinary measure. Since Gauss
measure is compatible to the increasing of the divided points, we use
it at the first step. Now we must give the exact meaning of lim.

Let D--{D()} denote the family of the set of divided points. By
the order D(")D(’ which means the inclusion, D becomes to a partially
ordered set. Let [,,,) denote the Hilbert space whose base is [);
ss<s}. Here the element of this base J(s) has been already
defined by using the sequence space E4, E6.

Definition 1. Ordered family is the family of the projection’s
set E{PJ’)} with the following properties, where n describes the set
belonging to it and j describes the projection elements belonging to
this set;

(1)

(2)
(3)
(4)

for any k, and for any n, m with the property nm
P(’)>P’ or PJ"_I_P for all j,
P() 2_ P[’ for i#j,

VP(’<=VP) for m>=n,
V(V
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Next, let’s define the characteristic vector V(P) and characteristic
projection P() corresponding to the above ?’)(s) and ((s), ")(s)).

Definition 2. V(P; {en}) is an unit vector effected equally by the
elements of some fixed base {e,} of the range of P. P,() is the
formal inner product ($, V(P; {e,}).

Since V(P; {(’n}) is not necessarily contained in the original Hilbert
space , we use the term "formal inner product".

Now, let’s use the abbreviation V(P]");, se s)_, s"))) V(PJ)),
and P")($)($, V(P]’))). We can easily show that P]")($)V(P]"))

(s; n, j, ) (s)ds/(s-(_, in s [s)_,( s). The exact definition

of V(P) and P() by using the discussion in [4 is shown in 4.
Lemma 1. Suppose that P(j=I,..., n) have the properties

1) P= V= P, and 2) P P for i#j.

Then V(P)- Z=dimP/dimP V(P) and P($)- Z=,gdimP/dimPP($).
This lemma corresponds to the additivity of the integral’s domain.

Now, we give the definition of the cylinder functional for PJ’)().
Definition . If there exists N such that

f(Z(s; n, j, ))-f(P])((s)))-f(P)($(s)))-f(Z(s; m, i, ))
for any m, n>N, we call f is the cylinder functional. Furthermore
we say that this {P)} or D characterizes this cylinder functional fi

Cylinder functional can be represented by the functionfc.(Pf)((s))
j=l,...,N) defined in finite dimensional Euclidean space, because
{P]’)} has the following properties:

P’) P])-P)) P’)-P’) or 0 and (ZP))P’))($)- (Z;-)ec)0,
p))($) ()r for n> N.

We can show that the cylinder functional is a sort of step func-
tional and the increasing of the set D characterized this cylinder
functional corresponds to the refinement of the steps. (Similar dis-
cussion contained discrete g can be possible.) These concepts are
important in the next paper.

By using the ordered family of projection, we can also show the
generalized definition of cylinder functional which contains the special
case defined in Example 1.

Theorem 1. If f($(s)) k--l, 2,..., n are cylinder functionals,
then F(f($(s)); k--l, 2,..., n) is also a cylinder functional, where
F(x; k=l, 2,..., n) is a continuous function of x.

Proof. Suppose that the divisions characterized by cylinder func-
tionals f($(s))(k-I,..., n)are denoted by D (k-I,..., n) and the
set of projections related to D is denoted by {P(k)}. Denote the set
of division UD by Dz and the set of projections related to Dz by
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{P(X)}. Then f(X(s; X, i, $))=f(X(s; k, j, $)) for k--1, 2,..., n.
If D is a refinement of Dz and {P(m)} is the set of projections

related to D, then f(X(s; m, j, $))=f(X(s; X, i, $)) for k-1, 2,
.., n. Hence, F(f(v(s; n, 3", $)) F(f(-r(s; 2, i, $))). From the

above argument F(f($(s))) is also a cylinder functional.
For a cylinder functional f($(s)), ]f($(s))l is also a cylinder func-

tional. Consequently we can define a metric in the set of cylinder
functionals C by dist (f, f2) ---( If--f2 for f, f2 C. From the def-
inition of functional integral, we can easily obtain the following

Theorem 2. The space C with the above distance is a metric
space.

The set of integrable functionals is the completion of C using
this norm.

Theorem :. The functional contained in the set of integrable

functionals C has one valued functional integral.

Proof. For f contained in C, we can choose a Cauchy sequence
of the cylinder functionals [f} with the following property; for any

> 0, there exists N such that I( ]f--f I) for m, n> N. Since for
any above Cauchy sequence [f}

I(fn)-- I(f,)l <= II(f--fm)

_
I( ]fn--fm ]) ( 3

{I(f)} is also a Cauchy sequence. By using the above inequality (3),
lim I(f) take the same value for any above equivalent sequence {f}.
Using this Theorem 3, we can understand the meanings of lim.

:. Feynman integral. The transition probability from the state
at time to to the state at t can be represented by

g(, t; , to)--fdq’dq"*(q")g(q", t; q’, to)(q’).

Here, the Kernel function K(q"t; q’to) is represented by

K(q"t; q’to)-- lim 1]:I dql-i=o K(q t ; qt).

Furthermore ":=0 with1-I,=oK is represented by the formula N.e/
the normalization factor N in which _0s tends to

dtL[(t), q(t) (m(s)/2 Y[q(s))ds.
o o

This formula can be related to SchrSdinger equation 3u/t-
i(1/(2 m))z/-Vu(t) with the initial condition u(0)-, where z/is the
Laplace operator /3x+... +3/3x on /-dimensional Euclidean space
R*. Its kernel function is U,r--exp it[(1m))l-- V. For 1/(2 m)--0,
U, becomes to M-exp (--it V) and for V-0 U*, becomes to

K(x)- (2= it/m)-*/fexp [(im/2)(Ix--y [/t)k(y)dy.

Trother’s theorem asserts that for all k in L, U,@=lim
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Here, (K’M/’)’(x) is represented by

(2it/nm)-/f fe""’;(x)dx...dx, where Xo--X.

S(xo,...,x; t) must be represented by simple and exact form. The
following form is one of them;

S(xo, x; t)= Z=[(m/2) x-.x_ /(t/n)- V(x)t/n.
By using this formula, our above integral can be represented by the
functional integral

U,-[lim (2it/m) / ex i [m/2 V(())g((0))D.
Dg

Our roblems with respect to S(o,..., ; t) are the following:
1 to obtain the more simle and more exaet aroximate formula,

(2) to investigate whether the above aroximate formula tends
to the functional integral defined by some meaning or not. Prom
the above two view oint the discussion in 2 is not neeessarily
saNeient. hen we need the other arguments.

Our definition correspond to use the ste funetion in the domain
of g(())and to use a ste function eonstrueted by a sort of finite
difference of the above ste function in m/2. his is also another
natural consideration. Another urose of Peynman integral is
obtain the elassieal ath which takes the minimal value of the integral

"gtL[(t), his classical is deduced from the solution ofq(t). path
o
the equation dtL(t),q(t)--O, namely it is the solution of the

equation --m(s)--V’[q(s)=O by distribution’s meaning.
If we calculate Feynman integral by our method, the path with

the maximal probability is still this solution.
Namely, we obtain the following

Theorem 4. The optimal ath of gtL[O(t), q(t) i the

If (l/h) L[O(t), q(t)gt tends to , then gq ex (i/h) L[O(t),
lO 0

4. axs. Let’s define the real axis in which generalized

functions 4(t) (-- t + ) are distributed. We denote by
the set of the four vectors of convex continuous functions {f+,f_,
g+, g_} defined in (--, +) the elements of which satisfy the
conditions [f()--f(-- )]< + , [f()--f(-- )< + g()--
g(--)] <+ and [g()--g(--)] <+. According to the
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properties of the convex continuous functions, the set I-{/, /], /,
/g}_ can be defined and considered as the set of the sequence of

{/(f+ Pn) }, {4(fZ Pn)"} w "}{/(g-Pn) }" It constructsC functions " {/(g+Pn) },
the generalized L space. Using these generalized L space, let’s
define the characteristic vector V(P) and the characteristic projection
P($). Characteristic vector V(P) corresponds to the generalized
characteristic function of t produced by the range of P. The reason
by which we use the term "generalized characteristic function" is
the following, if the interval corresponding to P is one point t-to,
then V(P) becomes to /g(t0). Characteristic projection P()is defined
by P((s))-(V(P), (s)}. This /-(x) which is the base of our discus-
sion is already shown in 4, and is assemble to one in E6. The
normalization factor by Feynman is

N(t, 0)-lim (mlihr)/- lim (mnliht)/.

This infinity is canceled by the functional integral defined in 3
and constructed generalized function.
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