By Hisashi CHODA and Marie ECHIGO Department of Mathematics, Osaka Gakugei Daigaku (Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1964)

1. In the previous paper [2], we proved that the crossed product $G \otimes \mathcal{A}$ of a finite von Neumann algebra \mathcal{A} by a group G of outer automorphisms has the property Q (Definition 2, in the below), only if G is amenable, and that the factor constructed by an enumerable ergodic *m*-group G on a measure space by the method due to Murray and von Neumann [4] is a continuous hyperfinite factor only if G is amenable.

In the present note, we shall show that the crossed product of a finite von Neumann algebra with the property Q by an amenable group G of outer automorphisms has the property P in the sense of J. T. Schwartz [5] (Definition 1, in the below), and that the factor constructed by an enumerable ergodic amenable m-group G and a measure space by the method due to Murray and von Neumann has the property P.

We shall use the terminology due to Dixmier [3] and the previous note [2] without further explanations.

2. In the first place, we state some properties of the operator Banach mean defined in [1]. Let G be a discrete group and $L^{\infty}(G)$ the algebra of all bounded complex-valued functions on G. We shall denote a Banach mean on $L^{\infty}(G)$ by $\int_{\sigma} x(g)dg$. A group with a Banach mean will be called *amenable*. Let $\{T_{g}; g \in G\}$ be an operator family which is uniformly bounded on a Hilbert space. If G is amenable, then

$$[x|y] = \int_{G} (T_g x|y) dg$$

is a bounded bilinear form on the Hilbert space. Hence, there exists a unique bounded operator T such that [x|y] = (Tx|y). Then we shall call T the operator Banach mean on G and write it by

$$T = \int_{G} T_{g} \, dg.$$

It is proved in [1] that the operator Banach mean satisfies the following properties:

a) $\int [\alpha T_g + \beta S_g] dg = \alpha \int T_g dg + \beta \int S_g dg$,

b)
$$\int T_g dg \ge 0$$
 if $T_g \ge 0$ for all g_g
c) $\int T_g^* dg = \left[\int T_g dg \right]^*$,
d) $\int T_{gh} dg = \int T_g dg$, for any $h \in G$,
e) $\int I dg = I$,
f) $\int ST_g dg = S \int T_g dg$,
g) $\int T_g S dg = \left[\int T_g dg \right] S$,

where S is a bounded operator on the Hilbert space;

h) Let \mathcal{K} be a weakly closed convex set of operators on the Hilbert space, and suppose $T_g \in \mathcal{K}$ for all $g \in G$, then

$$\int T_g \, dg \in \mathcal{K}$$
,

i) Let T be an operator, and suppose that T commutes with T_g for all $g \in G$. Then $\int T_g dg$ commutes with T.

The following definition is due to Schwartz [5]:

DEFINITION 1. A von Neumann algebra \mathcal{A} has the property P if for each linear operator T in the Hilbert space the weakly closed convex hull \mathcal{K}_T of the set $\{UTU^*; U \in \mathcal{A}, U \text{ unitary}\}$ has a non-void intersection with \mathcal{A}' .

The following definition is a purely algebraical version of Definition 1 which is introduced in [1]:

DEFINITION 2. A von Neumann algebra \mathcal{A} has the property Q if there exists an amenable group \mathcal{G} of unitary operators which generates \mathcal{A} . In this case, \mathcal{G} will be called an *amenable generator* of \mathcal{A} .

THEOREM 1. Let \mathcal{A} be a von Neumann algebra with a finite faithful normal trace φ and G a group of outer automorphisms of \mathcal{A} which satisfies the following property:

 $\varphi(A^g) = \varphi(A)$ for $A \in \mathcal{A}$ and $g \in G$.

If \mathcal{A} has the property Q and G is amenable, then the crossed product $G \otimes \mathcal{A}$ of \mathcal{A} by G with respect to φ has the property P.

The proof of Theorem 1 has some analogy with the technique of Lemma 3 of Schwartz [6]. Let us identify \mathcal{A} with $1 \otimes \mathcal{A}$. Let \mathcal{G} be an amenable generator of \mathcal{A} and

$$arPhi_{_{0}}(T)\!=\!\int\limits_{_{G}}\!UTU^{*}dU$$
 for any $T\!\in\!\mathcal{L}(G\!\otimes\!\mathcal{H})$,

where \mathcal{H} is the representation space of \mathcal{A} with respect to φ . Then $\Phi_0(T) \in \mathcal{A}'$ by d), f), and g). On the other hand, $U_q A U_q^{-1} = A^{q^{-1}}$, where U_q is defined by

[Vol. 40,

~

Therefore $\Phi(T)$ commutes with \mathcal{A} and $\{U_h; h \in G\}$. Since $G \otimes \mathcal{A}$ is generated by \mathcal{A} and $\{U_h; h \in G\}$, we have $\Phi(T) \in (G \otimes \mathcal{A})'$. Every $U \in \mathcal{Q}$ and $U_g (g \in G)$ are unitary operators of $G \otimes \mathcal{A}$, and $\Phi_0(T) \in \mathcal{K}_T$ so that $\Phi(T) \in \mathcal{K}_{\varphi_0(T)} \subset \mathcal{K}_T$. Hence $\Phi(T) \in \mathcal{K}_T \cap (G \otimes \mathcal{A})'$. Therefore $G \otimes \mathcal{A}$ has the property P.

THEOREM 2. Let G be an enumerable ergodic m-group in a measure space (S, m) with m(S)=1. If G is amenable, then the factor constructed by G and (S, m) by the method of Murray and von Neumann has the property P.

Since Turumaru pointed out in [7] that the factor constructed by G and (S, m) by the method due to Murray and von Neumann is nothing but the crossed product of a certain abelian von Neumann algebra by a group of outer automorphisms which is isomorphic to G, Theorem 2 follows from Theorem 1.

In this paper, we obtained a sufficient condition for the crossed product to have the property P. We shall discuss elsewhere a sufficient condition for the crossed product to have the property Q.

References

- H. Choda and M. Echigo: A new algebraical property of certain von Neumann algebras. Proc. Japan Acad., 39, 651-655 (1963).
- [2] —: A remark on a construction of finite factors. I. Proc. Japan Acad., 40, 474-478 (1964).
- [3] J. Dixmier: Les Algères d'Opérateurs dans l'Espace Hilbertien. Gauthier-Villars, Paris (1957).
- [4] F. Murray and J. von Neumann: Rings of operators. Ann. of Math., 37, 116-229 (1936).
- [5] J. Schwartz: Two finite, non-hyperfinite, non-isomorphic factors. Comm. Pure and Appl. Math., 16, 19-26 (1963).
- [6] ——: Non-isomorphism of a pair of factors of type III. Comm. Pure and Appl. Math., 16, 111-120 (1963).
- [7] T. Turumaru: Crossed product of operator algebra. Tohoku Math. J., 10, 355-365 (1958).