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1. Definition of Wiener homeomorphism (W.H.). In the
theory of ideal boundaries of Riemann surfaces, the family of Wiener
functions ([3], pp. 54-65) and that of Dirichlet functions ([3], pp.
65-85) are two main important classes of functions on Riemann
surfaces. Let T be a homeomorphism of a Riemann surface R onto
another R2. It is known ([4_, [5]) that T is a general quasiconformal
homeomorphism (which we shall abbreviate as Q.H.) of R onto R.
if and only if T preserves bounded continuous Dirichlet functions. In
contrast with this, it is natural and has some interest to introduce a
class of homeomorphisms between Riemann surfaces preserving bound-
ed continuous Wiener functions. Let C(R) be the totality of bounded
continuous Wiener functions on a Riemann surface R.

Definition. A homeomorphism T of a Riemann surface R onto
another R. is called a Wiener homeomorphism (which we abbreviate
as W.H.) of R onto R. if f T belongs to C(R) when and only
when f belongs to C(R.).

2. Algebraic and topological criterion of existence of W.H.
Let R* be the Wiener compactification ([3_, pp. 96-109) of a Riemann
surface R and C(R*) be the totality of real-valued bounded continu-
ous functions on R*. By definition, any function in C(R) can be
continuously extended to R* uniquely and so we may consider that
C(R)C(R*). Since C(R) is a vector subspace of C(R*) which is
closed under max and min operations ([3, p. 56) and cf/V(R) separates
points in R* ([3], p. 98), by Stone’s theorem ([3], p. 5), c/gZ(R) is
dense in C(R*) with respect to the uniform convergence topology.
Hence C(R)-C(R*), since C(R) is uniformly closed. We call cfgZ(R)
Wiener algebra on R in contrast with Royden algebra ([5]).

Theorem 1. Any W.H. T of R1 onto R2 induces (and is induced
by) an algebraic isomorphism f--f of q/V(RI) onto c//V(R2) satisfying
f--foT-?

Proof. We have only to show that any algebraic isomorphism

f-->f of C(R) onto C(R.) is induced by a W.H. T of R onto R.
with f--foT-. Since C(R)--C(R*) and R* is compact, any alge-
braic homomorphism of q/V(R) onto real numbers is of the form
f-->f(p), where .p is a unique fixed point in R* determined by this
homomorphism. Let peR*. Then f--f-(p) is an algebraic homo-
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morphism of (R.) onto real numbers and so there exists a unique
point T*(p) in R* such that f-(p)--f(T*(p)). From this, it is easy
to see that T* is a homeomorphism of R* onto R*. Let p e R. Then
since any point in R*--R cannot have a countable fundamental
neighborhood system (3, p. 103), T*(p) must belong to R2. Thus
the restriction of T* on R gives rise to a homeomorphism T of R onto
R2 and f---foT on R or f--foT- on R2 assures that T is a
W.H. of R onto R2.

Theorem 2. Any W.H. T of R1 onto R2 can be extended to a
homeomorphism T* of R* onto R.1 and conversely, the restriction
on RI of any homeomovphism T* of R* onto R* gives vise to a
W.H. T o/RI onto R2.2

Proof. Let T be a W.H. of R onto R2. Then f-foT- induces
an algebraic isomorphism of C(R) onto C(R) and as in the proof
of Theorem 1, this isomorphism induces a homeomorphism T* of R*
onto R such that fo T---- fo T*-I for any f in q//(R2)- C(R*). Thus
the restriction of T* on R is T. Conversely, assume that T* is a
homeomorphism of R* onto R*. Then ffoT*- induces an algebraic
isomorphism of C(R*)-- q/(R) onto C(R*)-- C(R) and so by Theorem
1, there exists a W.H. T of R onto R2 such that foT*---foT-for any f in C(R*)-q/(R2). Thus the restriction of T* on R1 is a
W.H. T of R onto R2.

:. Absolute continuity of W.H. on Wiener boundary. We
denote by /the Wiener boundary R*--R and by F (Wiener) harmonic
boundary of R* (3, p. 90). The set (resp. F) is a compact subset
of R* (resp. z/). If we denote by q0(R) the totality of bounded
continuous Wiener potentials (3, p. 56), then /"--(peR*; f(p)--O for
any f in c0(R)) and q/o(R)--(fC(R); f--0 on F).

Theorem 3. Any W.H. T of a Riemann surface R onto R. can
be extended to a homeomorphism T* of R* onto R* and T*(F)--F2.

Proof. Let pe F. Clearly p-- T*(p) A. We have to show
that p. e F.. Contrary to the assertion, assume that p e A--F.
Since F is compact, we can find two open neighborhoods F* and

G* of p. such that F*G* and F*F--. Moreover we may
assume that relative boundaries of F.--F*R and G=G*R.
consist of at most countably many piecewise analytic Jordan curves
not ending and not accumulating in R. We set F*--T*-(F*),
G* T*-1 *(G.), F T-(F) F*R and G-T-(G)-G*R. Since

FR--G$p,F_R--G and so there exists a connected com-
ponent of G, say G, not of type SOn ([3, Satz 9.12, p. 108).

1) The same is true for Q.H. and Royden’s compactification and algebra (E5], [_4).
2) This is not true for Q.H. and Royden’s compactification.
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Let G-T(G). We can find a normal exhaustion ,’c’,,,/:1 of R. such
that 3R) G=. Then (Rc) is an exhaustion of R, where R)-
T-(R ). We can find a real-valued continuous function f on R
such that 0gf<l on R and f-0 on _.. FR)(R--F)
and f- 1 on .=.._z(:) GR). Let f=fo T. Then f is continu-
ous function on R such that 0 gf1 on R and f-0 on :=3R and

f- 1 on ,=w-
(() G). As GSO,, so there exists a continuous

function h on R such that 0ghgl on R and h--0 on R--G and
R() C)

h e HB(G) and h > 0 on G. Clearly H," 0 and -.., >h>0. Thus

m’"H, does not exist on R. Hence f (R) (3, Satz 6.2, p. 57).
Let K--F2. Then there exists a positive finite superharmonic
function S on R2 such that lim,S(z)- for any p in K. Let
(R.)= be an arbitrary exhaustion of R and z >0. Then 0

R(2)

for sufficiently large n. Thus lim sup H (z)geS(z) for any point
Rz in R2, or hmH 0 on R2. This shows thatf2e(R2)(3, Satz

6.3, p. 62). Thus we have A=f2T and A e (R) and f2 e (R2).
This contradicts the fact that T is a W.H.

Corollary 5.1. Let T be a W.H. of a hyperbolic Riemann

surface R oto another R2 and G be a subdomain of R. Then
GeSO, if and only if TGeSO,,.

Proof. GeSO,, if and only if FR--G (3, p. 108). This with
Theorem 3 proves our assertion.

Theorem 4. Let T be a W.H. of a Reimann surface R onto

R2 and T* be its homeomorphic extension of R onto R. The set
X in is of harmonic measure zero (3J, p. 87) if .and only if
T*(X) is of harmonic measure zero in 2.

Proof. Let w be the harmonic measure on . Since w(A--F)--0,
we have only to prove that if the set X in E is of harmonic measure
zero, then T*(X) is of harmonic measure zero. As F is a Stonean
space (3J, p. 101), we can find a sequence (K):= of open and compact
subsets K in F such that KK2...KX and w(K) 0 (n).
By Theorem 3, T*(X)E2. Contrary to the assertion, assume that
w2(T*X) > 0. Let f be the characteristic function of T*Kn. Then f

on F2 and H(z) H,(z) fAis continuous

o2,(T*X) 0. Hence u(z)- lim H(z) is a strictly positive HB-
function on R2 with ugH on R2. Thus U= (pc F2; u(p) > 0) is a
non-void open set in E2. As f(q)-H(q)u(q) on E2 (3, p. 101),
so U T*K. By the fact that E2 is a Stonean space, U(T*K) is

3) This is not true for Q.H. and Royden’s compactification (see E6J, p. 175).
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open and closed and so is K--T*-I() in F1 and KnK(n--l,2,...).
Let f be the characteristic function of K on F. Then f is continu-
ous on /’ and so H, is a non-negative HB-function on R and so
continuous on R* and H/(p)--f(p) on F1. Since f(p) > 0 and f(p)

_
0

on F, H’ is strictly positive on R. Thus for any point z in R,

H(z)--fdw,z--W,(K), i.e. w(K) > 0. Hence w(K.)0 0

(n--1,2,...). This contradicts the fact that w(K,)O (n).
4. Invarance of some classes of open Riemann surfaces by

Theorem 5. 0, 0, 0 (1n ) and U ave invariant by
W. H.

Proof. Let R be an open Riemann surface. ReO if and only
if F--C, ReO if and only if F consists of only one point, ReO--
--1 00 (2n< ) if and only if consists of n points, R e0

if and only if E-(p,,p,...)X with w(p)>0 (n--1,2,...) and
w(X)-0, ReU if and only if contains a point p with w(p)>0
(3, pp. 125-127). From this with Theorems 3 and 4, we get our
assertion.

5. W.H. of open unit disc. Let U=(z; z<l), C=3U and U=

Theorem 6. Let T be a W.H. of U onto U. Then T can be

continuously extended so as to be a homeomorphism T of U onto U.
Proof. By applying a suitable linear transformation, we may

assume that T(0)--0. Let eC and C(T, ) be the cluster set of T
at in U. First we show that C(T,{) consists of only one point
in C. If this is not the case, then Ct,(T, ) is a non-degenerated closed

subarc A of C. Let V-(zU; z--]l/n) (n--l, 2,...) and f be a
continuous function on U such that f-I on V and fn is harmonic
in U--V. with boundary values 0 at C--V and 1 at 3V. Then f
is a superharmonic in U and so f e (U) and also g=foT- e (U).
We decompose fn and g into the forms fn=U+ and g--v
where u,, Vn e HB(U) and n, n@ 0(U). Let T* be the continuous
extension of T of the Wiener compactification U* of U onto U*.
Then goT.--goT=fn on U and so goT*=f, on U*. Since T*
preserves the harmonic boundary F of U and n--n--O on F, we get
that u--voT* on F. Clearly, u is the harmonic measure of VC
in U and so UnA(1--U)--O in U. Hence rain (u(p), 1--u(p))-0 on
F ([3, p. 56). Thus Un takes only two values 0 and 1 on F and

T*the same is true for Vn, since u=vo on F and T*(F)--F. Let
K--(peF;u(p)--l). Then T*(K)--(pF;v(p)--l). Let w be the

4) Compare this with the result of Pfluger [7] and Royden [8] concerning Q.H.
5) This is true for Q.H. (see [1).
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harmonic measure on F with respect to 0. Then (o(Kn)--fu(p)dto(p)-
u(0) and similarly, o(T*(K))--v(O). Clearly, u(0)0 on U and so

KK.K... and so T*(K)T*(K.)T*(K)... and (o(K)0.
Thus o([J%Kn)--lim (K)--0 and by Theorem 4, O--o(T*(kJ%K))--
o([.J%T*(K))--limo(T*(K))--limv(O). Thus Vn(O)O. But this
is a contradiction. In fact, there exists a bounded Green potential
S in U such that [IgS in U (3], Hilfssatz 6.4, p. 56). Then by
Littlewood’s theorem (see for example, 9, Theorem IV. 33 in p. 170
and Theorem IV. 34 in p. 172), limr/. S(re")-O and so limr/ ,(re")-O
for almost every e" in C. As v,(e)-limr/V,(re") exists for almost
every e" in C and so lim/ g,(re) exists and equals v,(e) for almost
every e" in C. Let ’,,--(re"; 0_<r<l) and ’=T-(r). We see

that the closure of rL in U contains for each w in the interior
of the arc A--Cv(T, ) except at most one w in it. To see this, assume
that there exist two distinct points w and w. in the interior of the
arc A such that ~[,,,.. As rw,y,, divides U into two components
U and U., so r,r,, divides U into two components U( and U.

-3U[ (i-1,2) isWe assume that T(U[)-U (i-1,2). Since

free from , one of the closures U[ of U[ in U (i=1,2), say U[, is

a neighborhood of in U. Then A-- Cv(T, )T(U)-- U by the def-

inition of the cluster set and so A(C--U)--, which is clearly a
contradiction, since w and w,. are contained in the interior of A and

so A(C--U)4:. Thus 5e for each w in A except at most three
points in A. Let A, be the set of w in A such that g, has the limit
along r. and 5e. Then A--A, is of linear measure zero. For each
weA, we can find a sequence ze’ such that z-->5 in U. Then
T(z)--re’->w. Thus v(e"w) limr/ g(re’’) lim g(re’)
limg(T(z))--limf(z)--l. Hence v(e)--I for all e in A and
so for almost every e in A. Since v(z)>_O on U, v(0)--

(1/2)fv(e)dt?_(1/2z)fdt?--(1/2)fdO.------ Hence 0--1imv(0)_>
A A

(1/2)/dO> 0, a contradiction.

Thus C(T, 5) consists of one point in C, say Th, for any 5 in C.
Thus by setting T(z)--T(z) for z in U, T is a continuous mapping of U
onto U. Assume that there exist two distinct points b and b. in C such

that T(b)--T(b.). We take an analytic Jordan arc L in U connecting

b and b. Then T(L) is a closed Jordan curve in U with T(U)C--
T(b)--T(b). The interior G. of T(L) is a subdomain of U and G-
T-(G.) is also a subdomain of U with 3G--L. Clearly
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and G.eSOn. This contradicts Corollary 3.1.

Theorem 7. Let T be a W.H. of U onto U and Tbe its homeo-

morphic extension of U onto U. Then T is an absolutely continuous
homeomorphism of C onto C.6

Proof. The identity map of U onto U can be extended to a

continuous mapping p of U* onto U uniquely (3], p. 99). Notice
that (2=)-dO is the harmonic measure on C with the reference point
0. Hence for any bounded continuous function f on C, we get

ffpdw--(2)-ff dO (3, Satz 8.6, p. 92). From this, for any

set K, it follows easily that w(K)--(2=)-]d.compact

It is easy to see that pT*--Tp in U* and similarly po(T-)*=

f(T-)op in U*. Let N be a compact set in C with gO--O. We have

to show that ] gO-O. By the above, (p-(N))-(2)-[gO-O and
CF) F

so w(T*(p-(F)))=O by Theorem 4. On the other hand, T(F)=
T(p(p-(F)))--(Tp)(p-(F))--(poT*)(p-(F)), i.e. po(T*(p-(F))) T(F).
Hence T*(p-(F))p-(T(F)). Let qep-(T(F)) and p--(T-)*(q)
(T*)-(q). Then p(p)--(po(T-)*)(q)--((T-)op)(q)--(T)-(p(q)). As
p(q) T(F), so (T)-(p(q)) e (T)-(T(F))-- F. Thus p e p-(F) and so
q= T*((T*)-(q)) T*(p)e T*(p-(F)). Thus we conclude that T*(p-(F))

fp-(T(N)). Hence gO--(2)(p-(T(N))--(2)(T*(p-(N))--O.
(F)
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