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101. On Boundary Value Problem for Parabolic Equations

By Reiko ARIMA
(Comm. by Kinjird KUNUGI, M.J.A., Sept. 12, 1964)

1. Introduction. Let us consider the parabolic equation

(1) %u:Au in (0, T)xQ
o\ 0
A= 3 a4 (,_> L=————A>
< Iué]zz;a( @) ox ot
with the zero initial data and the general boundary data
(2) Bu=f, (j=1,--+,b) on (0,T)xS

(ﬁ]: S bt ) <_f’_>”, ogrj§2b~—1>,
ivISr, o0x

where 2 is a domain in R™ surrounded by a hypersurface S.

Recently, this problem was treated by Eidelman for systems
([1]). Here we use his construction and estimates of kernels in the
case of constant coefficients and Q is a half space. We shall intro-
duce an operator defined on the boundary which plays an analogous
role to the Riemann-Liouville-operator which was used by Mihailov
in one dimensional case ([2]), therefore we need not assume that all
r, coincide, which was assumed by Eidelman in case of non-convex
region. Finally we have the estimates for the Green function.®

I thank Prof. Mizohata very much for his kind advices and en-
couragements throughout this subject.

Now, let {V}, be a finite covering of S and a point x=(x,,- - -, ,)

of V be represented by a local coordinate # =(&,,---,%,_,), such that
v,=F,&) (j=1,--+,n), where F,(&’) is of class-C*(s=2b+1+7,7>0),
and ' =%'(%) is class-C° where x¢ V(\ V. Then we have a n-dimen-
sional neighbourhood UDV, such that the transformation defined
by ®,=F,(x")+N,&)& (j=1,2,---,n) is one-to-one and of class-c'"*
between xz¢ U and %, where N,=(N,,- -, N,) is the unit inner normal

vecter at z¢S. Here we put S=U,U.
Put A,(»+2N,;t, w):(—l)"l ]Z a,(t, x)(n+2zN,)” and B, (n+2zN,; t, x)
v]|=2b
=(i)’f| ST b,(t, ) (p+2N,)*, where neT,=R"/{zN,}, ze R, tc(0, T'), z¢S.
v|=nr
Let A0+(;), 7, 2;t, %) be the polynomial of z of degree b (the coefficient
of 2° is 1), where the roots are composed of all the roots z of p—A4,

(n+2N,; t,x)=0, having the positive imaginary part. Then let us
denote

* Detailed proof will be published in a forthcoming paper.
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By (n+2N,; t, ) dz. .. By (n+2N,; t, 2)2"* dz
Ao (D7, 2 8, @) Ao, (D, 7, 25 T, %)
R(p, n; t, w):det. .........
By(n+2Ns;t, @) 4. ... £ Bu(+2zNsit @)’ o,
Ao (P, 1, % L, ) Ao (D, 1, 2 L, )
where the integrals are taken along a closed curve in the complex-z
plane surrounding all the roots of A4,,=0.
Now we assume the following assumptions
i) Re Ay(s;t, )<0 (6e R 0x0,te(0, T'), zc2),
i) R(p,7t,2)%0 (Rep=0,7¢T,, (0, 7)=0,t(0, T), xcS).
Concerning the regularity of the coefficients of L and B, and
that of f,, we assume

iii) a,(t, x)eC'(t, x) (xeQ) (y>0),
b;.(t, £)e C*P* (L, x) (xeS),
iv) Fi(t, 0)eCi(t, ) (xeS),

where ,=a(@b—1—¢e—7,) (a=1/2b, 0<e<7 in case of max. r,;<2b—1,
¢=0 in case of max.r,=2b—1).

2. Functional spaces C*, C¢, 6{9.

1. C’(t,x). f(,x)eCit, x) means

D |(Z)(L)rewsc @krikisio),
i) |(2)(2) st a+ st @3sClap- (@bt |=[8),

i) () (L) L4, 0 £ 2|0l g,

ot
([B]—2b<2bk,+| k| <[], a=1/2b).
2. Ci(t,x). f(t, x)eCi(t, ) means
i) St 2)eCHE, @),
ii) f&, 2)=0 (¢<0).
3. Ct, o). f(t o1, &)eClt—r, v—E) means
3 __a__ ko _Q_ . . e )@+ 20R0+ | B p—d (-7, B~
) (2 (2 ) e s e
(2ble,+ | k| <[F1), where (¢, )=c|a/t<|s, a=1/2b
and ¢=2b/2b—1 (c is a positive constant).
o j
i) |(2) (D) Tt e i 9 s e, 0]
< C| ]P0t —7)—t+Pgmsct=5 5=8)
2k, + | E|=[£], [4]<(E—1)),
ko k
i) |(2) (L) e+ e 95055 9])
éCAa(p—zbko—[lel)(t_T)—a(l+,9)e—¢(t-r, z—8)

([B]—2b< 2bk,+|k|<[B], 0<4<t—1),
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iv) f@ w7 8)=0 (t<q).
LEMMA 1. Assume G(t, %; 7, &) € Clopo (t—z, 2—&) (x, £ R, 0 B<1).
i) Let f(t, x)eC°(t, x), then

f ‘dr f G(t, @ 7, &) f (, &) dec Ci(t, ),

ii) Let f(¢, x; 7o &) eé\lol(t_fo’ r—¢&,), (%, &eR, 1, <n+2b), then
f deG(t’ x; 7, f)f(f, & 7o 50) déeé\flﬁ,—l(t_fm w_$0)°

3. Operator K,. Let us consider the parabolic operator [ defined
on (0, T)xS:
0 1 = 0 ==r=ian 0 )°
.Ez__ {_ 7 /' 1] A _}
P v Al (CORC V%%,
05 (LY 4 @)= OF, oF,
<_ ot 15 g"“”(a&) > where §.,(")=2 7z 3%,
(i’j:-]-v' ] n_l)
(9.,@)eC), g=det (g;;) and (g"")=(g:,)".
Then we have the fundamental solution P(t,x, &)(t>0, x, £€8S) with
the following properties.

i) P(t,x, &)=P(t, ¢, x),

ii) L. P(t, x, &)=0,
iif) lim [P(t,, & f(©dS:=f(=), (/: cont)
iv) f P(t—s, o, y) P(s—rz, 9, &) ds,= P(t—=, , £).

Using this, we can define the fractional power of L as follows.
13
Kyt 0)= ['de [K(t—c,5, 9 dS: (5>0),

where K,(t,x =
ﬂ( » Yy 5) [’(,8) P(t’ X, S)’
K, f(t, x)=LK;..f(2, r) (—1<B0),
and recurrently for all real 8. It follows LK,=K, ,, K,K; =K.,
K,=1. Moreover we can prove
LEMMA 2.
i) Let f(t, 2)eC{ @, x)(weS) (B;+208>0, x1,2,---),
K, f(t, x)eC{++(t, x) (xeS)
ll) Let f(tr X5 Toy So)eé\f'(t—fo’x_so)(x’ 5055)(}91+2b19>0, #1,2,' ‘ ')1
if I<mn—1+2b, then
(KL f)(E, @; 7o, &) € CLRP(E— 10, ®—E0) (¢, £,€S)
Let us notice that if u satisfies the conditions
(8) K ,Bu=K_, f; (j=1,--+,b) on 0, TyxS
and wue CP*i+(t, 2)(x e 2)(6>0),
then u satisfies (2) also.
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4. Construction of solution. Define the following functions for
(0_:(01, Gn):(017 *yO0poyy Gn)! Re p=1, e 7)2
Ain = Tl aior (A= 3 abo)(=))
Isi=2 |v]=20 ox

N SN A
Buloim 9= 3 Bulelio) (B,= 3 B9 1) )

A, (D, 0,047, €) and R(p, o'; 7, £) are defined in the same way as in 1,
namely, they are obtained by replacing 4,, B,; by A4, B, , respectively.
R,(p, o', &1, &) are defined in the same way as R, namely, by replacing
B,(0;7,€) by €“"». Define

gj(p’ 0 x' Ty 6) [p— 2 g (E)(zo./)] ﬂj R-;gg;;,o ,xfyfs’)g) '

Then we put

-~ - - 1 gl — . 1
G t’ w,’ X7, - m ’ d ! etp AVt ,; & T, d T=7a
0=y [ ote e

(xe l_/', Ee -17); Next we put
Gj(t’ 5 Ty 5): EI C—Y(w)@j(t-—f, E(x)"g(f)y Ty S)&(E)r and
B (@2, =G, (t, 57, )— [ 'ds [ 2,45, )L, ,G (5, 557, &) dy,
T Q2

(t>7, xeQ, €eS), where {a(x)}, is a partition of unity of §C§, such
that the element a(x) is inﬁnitely differentiable, its support is contained

in U, and S)ha(x)*=1 on S and Z(t, x; 7, £) is an elementary solution
of (1). Then {E;} have the following properties well attached to our
problem (1)-(2).

LEMMA 3.

i) E(t x5 &)eCli(t—r, 8—E) (>, ve, £€8), and

fdffE 3 7, &)1 (z, £)dS, CP=+7(t, ) (we Q)

for f(t, x)eCo(t, x) (xeS)(0'<i=Z7).

ii) L, ,E(t27,8=0 (t>c, 20, £eS).

iii) (K_sBE )¢, %5 7, &)= B¢, %; 7, §) — Ei(t, @; 7, €)
{t>, we§, &eS), where

o [ B 06 08— G0 (=D

for f(t,2)eCi(t, x) (xeS) (6>0),
B)  Eit @7, ) eClini(t—7, —&) (weS, £e8) ('<7).
Finally we put

Et, w5 O=E (t, 57,0+ [ ds [ Bt w5, 0)0,(5, 457, 8)dS,
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(t>r, xR, £€8S), where
El(tv X; 7, E) =( ib(t’ X T, 5)),
L .
Ej+1(tr X5 T, E)=f dstl(tr Z; 8, y)Ej(s) Y; T, é)dsy (.7:1’ 2" * ')r

and
O, x;7,8)=E,\¢, x;7, &)+ Eu(t, 257, 8)+ - - -,
where (i, z; z, f)e(/,‘\,f’_lm_,(t—r, x—&) (x,€€8S) (#’<7). Then we have
COROLLARY. i), ii) are same as in Lemma 3.
iii) (K_g,BL)(E, w57, &) =E(t, ®; 7, &)+, (¢, 457, &)
(t>z, xeS, &eS), where
gij(t’ %; 7, &) 66’7'_1_,_2,,_7(15——1', z—¢&) (¥'<r) and
&t x5 7, s)TO.

Then we have
THEOREM 1. Under the assumptions i)-iv), we can find a solution
u of the problem (1)-(2), such that

u(t, =33 f‘df f &t 57, &) K_y £z, £)dS,,
0

and u(t, x)e CE =+t x) (xeR) (¥'<7).
Define the Green function G of (1)-(2) as follows.
G, x, &)=Z(, x, §)— Z (¢, x, &), where
Z(t, x, £)=2Z(t, x; 0, &) and

Z(t,%,8=3 f dz [/t 37, K., B2z, v, )45,

Then we have
THEOREM 2. (|k|<2b—1,te(0,T), x, Q)
i) (in case of max.r,<2b—1)
’ <_a_>k Z(t, %, €) 'SCt—a@HkDe—w. =)=, D=9t ) %)
ox -
ii) (in case of max.r;=2b—1)
i)

K__>kz (t, 5)\<Cé-5t-a('n+lkl-ﬂ)e—sb(t,z—e)—sb(t.a;)—sb(t, 9 (5>0)
ax c\"r ¥y = .
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¥ ¢ is defined by ¢(t, ¥)=c|z/t*|e.



