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139. On Differentiability in Time of Solutions of
Some Type of Boundary Value Problems

By Hiroki TANABE.
(Comm. by Kinjir5 KUNUGI, M.J.A., Oct. 12, 1964)

1. Introduction. The differentiability problem of the solutions
of the abstract differential equation

du(t)/dt+A(t)u(t) f(t)
in a Banach space was treated by S. Agmon and L. Nirenberg ([2)
quite generally when A(t) does not depend on t. A. Friedman [4
generalized some of their results to the equations in a Hilbert space
in which A(t) may depend on t. However he assumes that the do-
main of A(t) does not depend on t, therefore his theorem cannot be
applied directly to the boundary value problem

3u(t, x)/3t-F A(t, x, D)u(t, x)--f(t, x), xe 2, (0.1)
B(t, x, D)u(t, x) O, x e 39, j= 1, ..., m, (0.2)

where D--(3/3x,...., 3/3x) and A(t, x, D) is an elliptic operator of
order 2m in a bounded domain 9R for each t, unless the coeffi-
cients of B(t, x, D), j--l,..., m, are independent of t. The object
of the present note is to show that A. Friedman’s method can be
applied to the problem (0.1)-(0.2) when the positive and negative
imaginary axes are of minimal growth with respect to the system
A(t, x, D), {B(t, x, D)}, in the sense of S. Agmon [1, and hence
that the solution of (0.1)-(0.2) is smooth in t as a function with
values in L(9) or H(9) if f(t, x) and the coefficients of A(t, x, D),
B(t, x, D), j--l,..., m, are sufficiently smooth.

2. Preliminary lemmas. Let 9 be a bounded domain with
smooth boundary in R". By H,(9) we denote the set of all measur-
able functions in 9 whose distribution derivatives of order up to
are square integrable, the norm of H,(9) being denoted by

Assumptions. (I) For each t (-- ) A(t, x, D)-- a.(t, x)D
is an elliptic operator of order 2m in 9.

(II) {B(t, x, Dx)}== b(t, x)D}=: is a normal system of

boundary operators for eaeh t. The order m of B(t, , D) is smaller
than 2m and does not depend on t.

(III) (--1)iD--A(t, x, D) (1.1)
is elliptic with respect to (x, y) in the cylindrical domain 9{y;-y} for each fixed t. The Complementing Condition is sat-

Disfied by (1.1) and {B(t, x, )}= in 9{y;-- <y<} for each t.
(IV) The coefficients of A(t, x, D) as well as those of {B(t, x,
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Dx)}j=l which may be supposed to be defined in the whole of {t;
t } are sufficiently smooth.

LEMMA 1.1. Under the assumptions (I)-(IV) there exists a pos-
itive number N such that if 2N or --N

2m 2m--k 2m--mj-k

for each usH(9) where w is an arbitrary function in H_(9)
which coincides with B(t, x, D)u(x) on the boundary of 9. If 12l N
we have

u]]gC{l[(i+A(t, x, nx))Ulo+ w [[_+l[u[[0}.
The above lemma is a consequence of Agmon-Douglis-Nirenberg

inequality applied to (1.1), {B(t, x, Dx)} and the function (y)e"u(x)
where $(y) is a real valued function satisfying (y)-I near the
origin and having a compact support and is a real number (cf. S.
Agmon [1]).

LEMMA 1.2. Suppose f and g are complex valued functions of
a real variable 2 with feL( , ) and geLS( , ). Then for
0</<1, we have

j( (f.g)() )d

12[[f(2)] d2 Ig(2) d2+ ]f(2)[d2 (12]]g(2)])d2.

3. Main theorem. Let v(t, x) be a function with values in
H(9) in -- t< and be a solution of the boundary value problem

3v(t,x)/Ot+A(t,x,D)v(t,x):f(t,x), --<t<, x9, (2.1)
B(t,x, Dx)v(t,x)--g(t,x), --<t< , xe3,

(2.2)
j--l, ..., m,

where f(t, x) and g(t, x), j-l,..., m, are functions of t with values
in L(9)and H_(9), j=l,..., m, respectively. Furthermore we
assume, that v(t, x)O when It--s] >6 where s is a fixed real number
and 6 is a sufficiently small positive number which should be specified
later. Let (t) be a smooth real valued function satisfying

{10 if --l<t<l,
e(t)-

if ItI >2,
and (t)-- 9((t--s)/a). Then

av(t, x)/at+ A(s, x, D)v(t, x)-F(t, x), x e,
B(s, x, D)v(t, x)-G(t, x), -1, ..., m,

where
F(t, x)--f(t, x)A- (t)(a(s, x)--a.(t, x)) v(t, x)

G(t, x)-g(t, x)+ (t)(b(s, x)--b(t, x))Dv(t, x)

=-- g(t, z)-4- h(t, z).
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The Fourier transform

e-v(t, x) dt

of v(t, x) with respect to t satisfies

i2(2, x)+A(s, x, D)(2, x)--F(2, x), xe2,

B(s, x, D)(2, x)-G(2, x), xe39, j-l, ..., m.
By Lemma 1.1 we have

2m 2m-k 2m--mj--k

11 =m -ll()11 < C.{llF()IIo+ mmll lle,()I1}
k=o j=l k=O

II ()I1. JII ?()IIo+ , II G.(,)I1.-+ II ()Iio}
=1

Thus we have

(12l [[ }()II)d2<C= [[F(2) llgda
k=O

(21).

’=

Writing y(t, s, x)--(t)(bz(s, x)--b(t, x)) we have for any multi-index
with ]]k

t x)D+v(t, x).Dh(t, x) D- ( s,
Ilm

In order to obtain an estimate of the right side of (2.1), we must
estimate

(I llD;hj(, )1)dd

where 1-(2m-m--k)/2m. By Lemma 1.2 we get

(I D;-%,( ", s, ).D;+,(., w)() I) da

f
f ]f+ 121]D;-r,(, s, w) d2 D;+’(, )l da.

It is easy to show that there exists a eonstant K such that
D;-r(t, s, x) K,
(O/Ot)D;-%,(t, s, x) g/,

which implies that for any given s>0 we have

D;-%(, , )[da< s, (2.3)

D;-r,(a, s, w) lda < s, (2.4)

when 6 is sufficiently small. Combining (2.1)-(2.4) and estimating
the other terms similarly we get
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( 2 ]] (2) llk) d2
k---O

=i k=O

when is sufficiently small.
If u(t, ) is a function of t with values in H(9) satisfying

B(t, x, D)u(t,x)=0, xe39, j--l, ..., m,
then v($, x)-e(2(t-s)/)u(t, x)(t)u(t, x) is a solution of

v(t, )/t+A(t, x, D)v(t, x)
(t)f(t, )+ ’(t)u(t, )A(t, x), x 9,
B(t, x, D)v(t, x)=0, x e39, j--l, ..., m.

Thus by (2.5) and Parseval theorem
2m

f(]2 [[) d2
(2.6)

If the derivative +(t, x)=3v(t, x)/Ot is also a function of t with values
in H(9), it satisfies

O(t, x)]Ot+A(t, x, D)(t, x)=f(t, x)--(t, x, D)v(t, x),
B(t, x, D)6(t, x)----(t, x, D)v(t, x), x e

Since (t, x, D)v(t, x) is a function of t with values in H_(9),
we can apply (2.5) to (t, x) and noting (2.6) we get

(2.7)

The left members of (2.6) and (2.7) dominate

fll dv(t) lo y.. v(t) ,. dt,

dt dt

A repeated applieation of the above argument showsrespectively.
that

THEOREM 1. The solution of the boundary value problem (0.1)-
(0.2) is a smooth function of t with values in L(t2) or H(9) if the
coecients of A(t, z, Dx) and Bj(t, x, D. ), j= 1, ..., m, f(t, x) and the
boundary of ;2 are suiciently smooth.
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Arguing as in the last section of [4], we can prove
THEOREM 2. Suppose in addition to the assumptions of Theorem

1 that the coecients of A(t, x, D) and B(t, x, D), ----1, ..., m, as
well as some of their derivatives in x are uniformly analytic in t
and that f(t, x) is an analytic function of t with values in Ls(2).
Then the solution of (0.1)-(0.2) is also an analytic function of t with
values in L([2) or H().
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