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1o Introduction. In what kind of linear (or Hilbert) spaces one
should treat the Quantum field operator is an important problem
both for practical calculation and for theoretical consideration. In
the previous papers [1, [2 we investigate this problem. In contrast
to the prevailing treatments where the endeavours to select one
adequate irreducible representation space are done, we tried to find
a way to use positively the universal Hilbert space [3 which may
be considered to include all the inequivalent representation spaces
provided that we could remove divergence.

In order to obtain the perturbative method in this space, the
first principal problem is to introduce the adequate topology. In [2
we considered the topology which corresponds to the cut-off process.
But these topologies in [2 are not enough general to be applied in
the calculation of the quantum field theory. In this paper we intro-
duce revised definitions of cut-off operators ( 2). Using cut-off oper-
ators, topologies are introduced by two ways. In 3 we consider
the first way of introduction of topologies (direct method). In 4
we consider the 2nd way of introduction of topology (dual space

method). In 4, [5 Professor S. Kasahara discusses this problem
and shows the necessary and sufficient conditions for the existence
of topologies using dual space. We combine his method and the
cut-off operations and obtain a practical method of limiting process
using cut-off process.

2. Cut-off operators. Using the decomposition of the universal
Hilbert space1’ II(R)=Xc@IIC(R)(C), we set a domain of cut-off oper-
ators by the following manner (1)(3).

( 1 ) We select a specific incomplete direct product //(R)(C)=H.
Since the following theory proceeds isomorphic, we restrict our con-
siderations to the case when the selected space is the closure of Fock
space:2 IIF(5, II=F.

(2) Relating to the space F we classify the other incomplete
direct products. The incomplete direct product // in the universal.
Hilbert space is determined by any of normalized C0-sequences {f} of

1) Terminology and notations not explained here are from J. yon Neumann [6 and
N. Bourbaki [10.

2) In [_1, [2] we call this closure simply "Fock space".
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. We assign {f} to every incomplete direct product // and call
II(R)f. reprensentative of H. (For example we can assign every
modified vacuum state as a representative of every irreducible re-
presentation space.) From //(R)(C), we exclude the incomplete direct
product H whose representative is orthogonal to F in the sense
of quasi-convergent to 0. (This exclusion may be well since the
vectors of two state in quantum field theory are considered to have
definite relative phase.)

(3) Let 1,} be a complete ortho-normal system of H such
that q--II(R)c(i, eI)8 (c.f. Von Neumann [3 4.1), which include
representative i.e., q)0=H(R)f#0. We select an algebraic normalized
base B--{1 I} of the space (C) which contains {fliI}. Let
[H(R). ] be a linear hull of F_H,(R),l{]a} runs through all the
mapping {a}-->{L}]. We assign for each H an algebraic linear space
I-_r/(R)B’:jI.

Ixample. We can assign [II(R)B’] for the space F which con-
tains the following states: (1) all the states (n, n,...)) where n
is an integer, and the (p, p, p,...)where p means a vector f=
.,=0v,,’ where c---e-Q/n! and fo:, corresponds to a particle
number n.

Remark. 0f course the space [H@B’] can contain infinitely
number of modified vacuum state. H(F) in (c.f. [2], p. 24) is contained
in closure of [H@B’], but a vector such that g=7=c with

H=t@@H,=+@,0, belongs to .F and does not
belong to [H@B’]. We see also that H@ (+)(c.f. p.

25 Example 1) belongs to neither H@B" nor H(F) in this case.
At the 2nd place we define the two sort of cut-off operators P

and P by the following (4)(5).
(4) Let eH’@ be a vector such that =7=c and

ell% ----.=.. where e EH@B]. We introduce a cut-off
operator using these unique expressions.

Definition 1. P is a linear mapping from HEH@B into
H defined by the following equality:

For a fixed base vector -,@..

@..,.@..+,, 0@""@,0@+ o@"" for n.N
where f.0, .0 is a component of respresentative of 8 and F. That
is to say P. exchanges component vectors g.. such that ..--0 for
a>N by vectors ..

3) Iz, and I. are sets of indices which correspond to the Hilbert base and algebraic
base respectively.

4) Haag’s notation [7].
5) Here suffix F of means free particle and f.F.
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For a vector eII,.,H’(R)., q=’* cO,= , we define PNO
,=cPO,.

Definition 2. P is a mapping from H’@O. into FH’@O. defined
by the following PO P(XcO) XcP= ZcP(X,c,O)-
XXccP.

( 5 For H whose representative is H0, we can select especially
Che space [H’B such that for any a, 0 and , is contained in

B--{]v}. We denote [HB or simply [H such special

Let a representative of H belong to [HJ, then there exists a base

of H which makes a subset of [J. Using such a base for H we

can define cut-off operators P for a vector of HJ quite similarly

in (4), and denote it by P.. Direct method. The problem related to the inequivalence of
representation is solved by R. Haag and D. Castler 8 introducing a
new topology. We show here that the problem is treated similarly
using cut-off operator. To introduce the topology by which lim PnO
= for any state of the universal Hilbert space, the neighborhood
U(O) must contain and PnO for any n, nN. We can see also
using Pv-- 1 that UN( {, P,[n N} satisfies the postulates of
neighborhood system of topological space H’@. This topology
has following properties:

(1) r is a finest one such that for any , P, converges to
(2) The restriction of to F is a discrete topology.
(3) is .not compatible with the linear operation i.e., P,+

P,..(O)+ does not follow from P, and P,. (The topo-
logy used by Haag and Castler is similarly not compatible with the
linear operations since ,+(A)--(++, A(+)}-,(A)+,(A)
+2R(%, A%).

(4) T-separation axiom holds in this space.
The neighborhood of 0 of the locally convex topology which is

compatible to linear operation must be of a form,
where N() is a positive integer valued function of and 20(g) is
a positive valued function of g, and with a few loss of generality
for our purpose we may assume that

Now we restrict N() simply by N()N, i.e.,
U. ,(0) U,.[--P,}+ V, F

and introduce topology r. Similarly replacing P in U., by P,S
6) [ ]c means convex hull.
7) E means //’@ for PN, and [II(B] for PN.
8) U,($0) in [2, (p. 26) must be replaced by this neighborhood.
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is defined, r and are well defind by virtue of the following
Theorem 1.9 The cut-off operator PN defines a locally convex

topology r1 in II’(R) such that the closure of FII"(R) includes

IF(R),. The cut-off operator P defines a locally convex metrizable

topology in H@BF such that the closure of FH@B includes

EHB.
Proof. The theorem is easily proved except separation axiom

for . So we prove U,-{0}. Assume that there exists a vector
r

x such that x e U,,, x0, x Efl. Let --x’+x where x eF,

xe EHFEH and let x =c (c#0), x-_d be

expressions by the normalized base of [l which are given above.
Now there exist a number e>0 such that e Min (c, ld)

and an integer N such that for any m,..., m+>N a system P,(),
.., P+() is linearly independent. Since x e U,, for these N,

there exist vectors , ..., , and integers n, ..., n>N such that
=( --P())+V and ]]V]<.
Let yz--+" (p=l, ...,1) and let

then =Z-O (j= l, ...,) and ==c (i-l, ., s). Using

=P--I we obtain x --={=P}
Since system {x, P,:i-1, ...,s} are linearly independent and
]]]]<e, there must exist such that Pn()--k., for a n.
Without loss of generality we assume that ,, ..., have these
properties, and +,, .-., have not such n (p--l, ..., 1). We write
this fact explicitly by o(lim). Now we see easily for li
m, P()#k:(j#l) and #k (lhs), and hence a system
{P,, P.:(j# 1), P,.o} for n, n’, >N is linearly inde-
pendent. Hence we obtain d,-’--=t=zP} where

<e. The above selection of base H ensures that for any family

of base {]i=1, ...,m} of H, {P]i} is a part of the base of

FH@B except overlapping. Hence we see that if =Z 0 (]= 1,
.., m) then ==(zP)--(==p),--0. So we have

<]d=[d,]-]]’[<e, that is contradiction.
4. Dual space method. Since the dual of the space of state

9) As Example I shows H@B contains in 2], (p. 26) and Theorem 1 is an
extended results of 2.

10) We can not assure that v satisfies T.-separation axiom on the whole universal
space.

11) // means [I)BF. [//] means

12) [_/-/]F[/-/] means supplement, i.e. [/-/]=([/-/])(([/-/][/-/]F) where
@ means direct sum.
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vectors has fundamental physical meaning in quantum theory, it
may be better to construct the space which preserves the value of
inner product between state as much as possible. So we postulate
that the inner products in F should be preserved though the ortho-

gonalty between F and II]FII] must be removed.
From the construction of //, we can see that in the space F

there is an algebraic base which contains all the maps of P(II)
(n=l, 2, 3,...). We introduce elements of dual space defining the

value on this base. For an element of FI1] we define an element

of a base of a dual space by (, )-1 for z-, and (, -0
for - where re[//]. For an element of II](F[ll] we

define an element of a dual space by the following

(, r)--/ otherwise.ifthere exists n such that r--p()or

Using S. Kasahara’s theorem 4] [5], this assignment ensures the

linear set [{}] makes a dual space G such that (//], G)is
locally convex Hausdorff topology. Now in this space we can assure

that for any element eH], lim Pn-- in the sense of a(II], G).
To prove this fact we have only to show that if , e//,

then there exists an integer N such that for any integer n>N,
z--,=/ we make a basep@: pflr. For @-=,

) from a system (,....,. .). Then there exists N such that

P (i--1, ...,s) make linearly independent family. Since there
exist ,. such that :Z where and Z are coefficients of in

a expression of , respectively, P#P for the component P@.
Thus we obtain the following

Theorem 2. P introduces locally convex Hausdorff topology

such that fo any eH, P(@)eF, lim P()-- in he sense of
a(H, G), and G contains FH preserving ordinary orhogo-
naliy between elements of base as (Hilber space).

The author would like to thank Professor K. Kunugi for his
encouragement. The author would like to thank also Professor S.
Kasahara for his valuable discussions.

(This article is dedicated to Professor K. Kunugi in celebration
of his 60th birthday.)

13) [ ] means linear hull.
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