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1 Let E be a vector space, and let M be an infinite dimensional
vector subspace of E. In a previous paper,) we stated a condition
which ensures the existence of a locally convex metrizable topology
on E possessing the following properties:

(1) Mis dense in E;
(2) The induced topology on M is finer than a given locally

convex metrizable topology on M.
Moreover, as a consequence of it, we obtained a condition which
ensures the existence of a locally convex metrizable topology on E
satisfying merely the requirement (1). The main interest in the
present paper is on the requirement (1), and we shall concern, in
what follows, with the problem of existence of a locally convex
Hausdorff topology on E possessing the property (1) without the
restriction that the topology is metrizable.

The terminology and notations used in the previous paper will
be continued in this paper.

2. Throughout this section the operation of polar will be taken
in the dual system (E**, E*).

We have immediately the following lemmas.
LEMMA 1. Let E be a vector space, and let E’ be a vector sub-

space of E*. If the dual system (E, E’) is separated, then E is
a a(E**, E*)-closed vector subspace of E** contained in an algebraic
supplement of E in E**. Conversely, if F is a a(E**, E*)-closed
vector subspace of E** such that E.,F={O}, then the dual system
(E, F) is separated.

LEMMA 2. Let E be a locally conve vector space, and let E’
be its dual. For every vector subspace M of E, the following con-
ditions are equivalent:

(1) M is dense in E.
(2) ME’-- {0}.
(3) The vector subspace M+E’ of E** is dense in E** for

the weak topology a(E**, E*).
Thus we have
THEOREM 1. Let M be a .vector subspace of a vector space E.

1) S. Kasahara: Locally convex metrizable topologies which make a given vector
subspace dense. Proc. Japan Acad., 40, 718-722 (1964).
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Then there exists a locally convex Hausdorff topology on E for which
M is dense in E if and only if there exists a a(E**, E*)-closed
vector subspace F of E** such that EF=[0] and M+F is dense
in E** for the weak topology a(E**,E*).

Moreover, it follows from the above lemmas the following
THEOREM 2. Let E be a locally convex Hausdorff vector space,

and let M be a vector subspace of E. If M is dense in E, then
every algebraic supplement of M in E is not dense in E.

Proof. Denote by E’ the dual of E, and suppose that both M
and an algebraic supplement N of M in E are dense in E. Then
by Lemma 2, we have (M-’N)E’=[O}, and hence (M-.N)+E’
is dense in E** for the weak topology a(E**, E*). But since MN
----{0}, this means that E’ is dense in E**, which contradicts, in view
of Lemma 1, the fact that the dual system (E, E’) is separated.

COROLLARY. Let E be a locally convex Hausdorff vector space,
and let M, N be two vector subspaces of E with the intersection {0}.

1 If M is dense in E, then N is not dense in E.
2 If N is contained in the closure of M, then M is not con-

tained in the closure of N.
THEOREM 3. Let M be a vector subspace of a vector space E,

and let r0 be a locally convex Hausdorff topology on M. Then, for
every algebraic supplement N of M, there exists a locally convex
Hausdorff topology r on E such that both M and N are closed, and
the induced topology of r on M coincides with to. Moreover, if ro is
metrizable, then r can be chosen to be metrizable.

Proof. We introduce a norm topology to the vector subspace N.
Since each x E can be written uniquely in the form: x-y+z, y e M,
z eN, by setting, then, p(x)-y a linear mapping p of E onto M is
obtained. Let e be the identity mapping of E onto itself. Then it
is easy to see that the weakest topology on E which makes both
mappings p and e--p continuous possesses the required property.

:. In this section we give another characterization of separate-
ness of a dual system.

Let (E, E’) be a dual system, and let A’ be a subset of E’ con-
taining a base of E’. We denote by (A’) the vector space consisting
of all complex-valued functions on A’. It is straightforward to see
that the mapping of E into the vector space (A’), which maps x eE
to the function f defined by

f(x’)--(x, x’} for all x’ e A’,
is linear. The following Lemma can be proved easily.

LEMMA 3. The following conditions on a dual system (E, E’)
are equivalent:

1 ) (E, E’) is separated in E.



No. 9 Closures of Vector Subspaces. I 725

(2) For every subset A’ of E’ containing a base of E’, the
mapping x-/fx of E into the vector space (A’) is an isomorphism.

(3) For every base B of E, and for every subset A’ of E’
containing a base of E’, the mapping x .f. o.f BE into (A’) is
one-to-one, and the subset [fx; xB} of (A’) is linearly independent.

Let E be an infinite dimensional vector space, and let E’ be a
vector subspace of E*. It is known) that the dimension of E* is
equal to 2m(. Consequently, we have dim (E) =< dim (E’*)-- 2’),
because E can be identified with a vector subspace of the algebraic
dual E’* of E’. Conversely we have

LEMMA 4. Let E be an infinite dimensional vector space. If
dim(E)=<2 for a cardinal number a, then there exists a vector sub-
space E’E* of dimension <= such that the dual system (E, E’) is
separated.

Proof. Let A be a set with the cardinal number a, and consider
the vector space (A). Let B be a base of E, and let B be a base
of (A). Then it follows from the inequality dim (E) =< 2--dim ((A)))
that there exists a one-to-one mapping x-f of B into B. For each
a eA, we define a linear functional a’ on E by setting

(x, ’}=f() for all x B.
Then it is evident that the vector subspace E’E* spanned by the
set {a’; a cA} is of dimension __<a. The separateness of the dual system
(E, E’) follows from Lemma 3.

4. We shall prove now the following
THEOREM 4. Let M be a vector subspace of an infinite dimen-

sional vector space E, and let ro be a locally convex Hausdorff topology
on M. Then there exists a locally convex Hausdorff topology r on E
which makes M dense in E and induces on M a topology coarser than
o if and only if dim (E)__<2m(’), where M’ is the dual of M for o.

Proof of the "only if" part. For each element x’ of the dual E’
of E for the topology , its restriction x’] to M does belong to M’.
Since x’]--y’l implies x’--y’M,.-.,E’--{O}, the mapping x’-->x’] of
E’ into M’ is one-to-one. In addition, as can be readily seen, this
mapping is linear. Consequently we have dim (E’) =< dim (M’). On
the other hand, because the dual system (E, E’) is separated, we have
dim (E)< 2(’’) and hence we have dim (E)

Proof of the "if" part. We denote by B a base of M, and by
B, a base of M’. For each xB, put

f(x’)-- (x, x’} for all x’ B,.
Then since the dual system (M, M’) is separated, the mapping x-->f
of B into the vector space (Bn.) is one-to-one, and the set B of
all fx, x eBb, is linearly independent (see Lemma 3). Therefore, the

2) See G. Kiithe" Topologische lineare Riume, I. Springer-Verlag, Berlin (1960).
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cardinal number of the set B is equal to the dimension of M. Let
Bv be a base of an algebraic supplement N of M in E. Then by the
assumption, we have dim (M)+dim (N) -< 2m’’’ =dim ((B,)), and
hence we can find a linearly independent subset B_(B,)with
cardinal number dim(N) such that B.,B=. Take a one-to-one
mapping x-> of B onto B, and define, for each x’ eBb,, a linear
functional ’ on E by letting

(x, x’} for x e M,
(x, Y}-- (x’) for x eB.

Then the space E and the vector subspace E’ of E* spanned by the
set A’={5’; x’ ebbs,} forms a separated dual system (E, E’). To prove
this, consider, for each xBnBv, a complex-valued function g on
A’ defined by

g(’)=(x, ’} for all ’ e A’
Since for every

f(x’) whenever x B,,
(x’) whenever x e B,

it follows that the mapping x-->g of B,Bv into ff(A’) is one-to-
one. We shall show that the image of the set B,B under this
mapping is a linearly independent subset of the vector space (A’).
Suppose that 2,g**=0, where x,...,xeB, and x+,...,xeB.
Then, for every 5’ A’ we have

i=l i=i i=m+l

= )+ ).
=i =+1

Ths shos that 7/+ 7-0 n the vector space (,), and
=I

so e have 7-- 0 for -- i,. ., . Hence the mse of the set
under the msppn z is lnerly ndependent. Thus sccordn to
Lemms 8, the dus] system (E, E’) s separated. Therefore the ek
topo]ozy (E, E’) s HsusdorE one.
No e shall proceed o prove that the vector subspace s

dense in E for the weak topology a(E, E’). Let x’-- x,-’ x’ B,,
i=l

be an element of ME’. Then we have

i=l i=l i=l

= (x, x’}-0 for all x e M.

It follows that 2x-0 in M’, and hence we have 2-0 for i-1,
i=l

n. Consequently we have M E’={0}, which shows that M is
dense in E for the weak topology a(E, E’).

Let x’ be a non-zero element of E’; then its restriction x’[, to
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M belongs to M’, because so does each element of A’. Hence, for
any x,..., xeE’, we can find a neighborhood U of 0 in M for the
topology r0 such that

](x, x}l ={(x, xl}l <- 1, i=1,. ., n,
for every x eU. Therefore U is contained in ({x,...,.x})M and
consequently the induced topology of a(E, E’) on M is coarser than r0.
This completes the proof of the "if" part.

As a consequence of Theorem 4, we have the following
THEOREM 5. Let M be a vector subspace of an infinite dimen-

sional vector space E. Then there exists a locally convex Hausdorff
topology on E for which M is dense in E if and only if dim(E)=<2",
where --2im().

Proof. Assume dim(E)=<2. Since the dual system (M,M*)is
separated, the weak topology a(M, M’*) is a locally convex Hausdorff
topology on M. Moreover, from the fact that dim (M*)-2(), it
follows that dim(E)__<2(-’*). Thus the conclusion follows from
Theorem 4. Conversely suppose that M is dense in E for a locally
convex Hausdorff topology r on E. Then, by applying Theorem 4
to the induced topology r0 of : on M, we have dim (E)_<_2’). But
then, since dim (M’)__<dim (2Y2")--2(), we have dim (E)=<2.

Combining these theorems with Theorem 3, we have the following
COROLLARY 1. Let E be a vector space, and let M, N be two vector

subspaces of E. Suppose that the dimension of M is infinite, and
M is occupied by a locally convex Hausdorff topology o. Then there
exists a locally convex Hausdorff topology r on E such that the closure
of M contains N and induces on M a topology coarser than :o if
and only if dim (M+N)<=2(’), where M’ is the dual of M.

COaOLLAaY 2. Let E be a vector space, and let M, N be two
vector subspaces of E. Suppose that the dimension of M is infinite.
Then there exists a locally convex Hausdorff topology on E such that
the closure of M contains N if and only if dim (M-I-N)<=2, where
(I2dim(M).

(This article is dedicated to Professor K. Kunugi in celebration
of his 60th birthday.)


