173. Remarks on Generalized Rings of Quotients

By Tomoharu Akiba
Department of Education, Kobe University
(Comm. by Zyoiti Suetuna, m.J.A., Dec. 12, 1964)

Introduction. Let A be an integral domain and let B be an overring of A contained in the quotient field of A. Then B is called a generalized ring of quotients of A if B is flat as an A-module. It has been shown that generalized rings of quotients have similar properties to those of ordinary rings of quotients (see [2] and [6]). In $\S 1$ of this paper, we first generalize the results to the case where A is not necessarily an integral domain. Some of the proofs are adaptions of those of [6], but, in order to make this paper self-contained, we repeat them again. In § 2, we give a counter example to the following conjecture of Richman in [6].

Let A be an integral domain and let B be a generalized ring of quotients of A not equal to A. Then there exists an x / y in B which is not in A, such that $(x, y) A$ is invertible.

The author wish to express his heartful thanks to Prof. M. Nagata for kind advices and for valuable suggestions.
§1. First of all, we list some well-known properties of flatness as lemmas without proofs (cf. [1], [3], [4]). Rings will mean always commutative rings with units.

Lemma 1. Let R and R^{\prime} be rings such that R^{\prime} is an R-module. Then R^{\prime} is R-flat if and only if the following condition is satisfied:

If $\left(y_{i}\right)$ and $\left(c_{i}\right)$ are finite subsets of R^{\prime} and R respectively, such that $\sum_{i} c_{i} y_{i}=0$, then there exist a finite subset $\left(x_{j}\right)$ of R^{\prime} and a finite subset $\left(b_{i j}\right)$ of R for which we have $\sum_{i} b_{i j} c_{i}=0$ for each j, and $y_{i}=$ $\sum_{j} b_{i j} x_{j}$ for each i.

Lemma 2. Let R and R^{\prime} be as above and assume that R^{\prime} is R flat. Let $\mathfrak{a}_{1}, \cdots, \mathfrak{a}_{r}$ be ideals of R. Then we have $\left(\cap_{i} \mathfrak{a}_{i}\right) R^{\prime}=\bigcap_{i} \mathfrak{a}_{i} R^{\prime}$.

Let A be a ring. In this section, we shall denote by B an overring of A contained in the total quotient ring of A.

Theorem 1. The following three conditions are equivalent to each other:
(1) B is A-flat.
(2) For any element b of B, we have $(A: b) B=B$, where $(A: b)$ denotes the set of elements a of A such that $a b \in A$. (It is evident that $(A: b)$ is an ideal of A.)
(3) For every prime ideal \mathfrak{p}^{\prime} of B, the canonical homomorphism $\varphi_{\mathfrak{p}^{\prime}}$ from $A_{\mathfrak{p}^{\prime} \cap \boldsymbol{A}}$ in $B_{\mathfrak{p}^{\prime}}$ is bijective. (Cf. Theorems 1 and 2 in [6].) Proof. Equivalence between (1) and (2): Assume that B is A flat. Let $b=x / y$ ($x, y \in A ; y$ is not a zero divisor) be an element of B. Then $y(x / y)-x .1=0$. By Lemma 1 , there exist a finite subset (b_{j}) of B and a finite subset ($a_{1 j}, a_{2 j}$) of A such that (1^{\prime}) $a_{1 j} y-a_{2 j} x=0$ for each $j,\left(2^{\prime}\right) x / y=\sum_{j} a_{1 j} b_{j}$, and (3^{\prime}) $1=\sum_{j} a_{2 j} b_{j}$. From (1^{\prime}), it follows that $a_{2 j}$ is in $(A: b)$ for every j, and (3^{\prime}) asserts that $(A: b) B=B$. Thus (1) implies (2).*) Assume, conversely, that (2) is valid. Let (y_{i}) and (c_{i}) be finite subsets of B and A respectively, such that $\sum_{i} y_{i} c_{i}=0$. Since ($A: y_{i}$) B=B for each i by the condition (2), we have $\left(\cap_{i}\left(A: y_{i}\right)\right) B \supseteqq \prod_{i}\left(A: y_{i}\right) B \supseteqq B$, and $\left(\cap_{i}\left(A: y_{i}\right)\right) B=B$. So there are finite subsets $\left(a_{j}\right)$ and $\left(x_{j}\right)$ of $\cap\left(A: y_{i}\right)$ and B respectively, for which we have $\sum_{j} a_{j} x_{j}=1$. Then $b_{i j}=y_{j} a_{j}$ is in A for each i and $j, y_{i}=$ $\sum_{j} y_{i} a_{j} x_{j}=\sum_{j}^{j} b_{i j} x_{j}$ for every i, and $0=\sum_{i} c_{i} y_{i} a_{j}=\sum_{i} c_{i} b_{i j}$ for each j. By Lemma 1 , this shows that B is A-flat. Hence (2) implies (1).

Equivalence between (2) and (3): assume that (2) is true. Let \mathfrak{p}^{\prime} be an arbitrary prime ideal of B and set $\mathfrak{p}=\mathfrak{p}^{\prime} \cap A$. If $\varphi_{p^{\prime}}(a / s)=0$ for an a / s of $A_{\mathfrak{p}}(a \in A, s \in A-\mathfrak{p})$, then we have $a s^{\prime}=0$ with an s^{\prime} in $B-\mathfrak{p}^{\prime}$. By the condition (2), $\left(A: s^{\prime}\right) B=B$ and then $\left(A: s^{\prime}\right) \nsubseteq \mathfrak{p}$. Hence there is an element t in $\left(A: s^{\prime}\right)$ such that $t \notin \mathfrak{p}$. Then $a s^{\prime} t=0$ with $s^{\prime} t \in A-\mathfrak{p}$, which shows that $a / s=0$ in $A_{\mathfrak{p}}$, whence $\varphi_{\mathfrak{p}^{\prime}}$ is injective. Next, let b / s^{\prime} be an arbitrary element of $B_{\mathfrak{p}^{\prime}}\left(b \in B, s^{\prime} \in B-\mathfrak{p}^{\prime}\right)$. Since $(A: b) B=B$ and $\left(A: s^{\prime}\right) B=B$, we have $\left((A: b) \cap\left(A: s^{\prime}\right)\right) B=B$ and so $(A: b) \cap\left(A: s^{\prime}\right) \not \equiv \mathfrak{p}$. Then there is an element s in $(A: b) \cap\left(A: s^{\prime}\right)$ which is not in \mathfrak{p}. For the s, we have $s s^{\prime} \in A-\mathfrak{p}$ and $b s \in A$, so $b s / s s^{\prime}$ may be considered as an element of $A_{\mathfrak{p}}$. It is obvious that $\varphi_{p^{\prime}}\left(b s / s s^{\prime}\right)=$ b / s^{\prime}, which shows that $\varphi_{p^{\prime}}$ is surjective. Thus (2) implies (3). Conversely, assume that (3) is satisfied, and suppose that there is a $b \in B$ such that $(A: b) B \neq B$. Then there is a prime ideal \mathfrak{p}^{\prime} of B containing $(A: b) B$, and so we have $\mathfrak{p} \supseteq(A: b)$ for $\mathfrak{p}=\mathfrak{p}^{\prime} \cap A$. Since $\varphi_{\mathfrak{p}^{\prime}}$ is surjective by the condition (3), we can take $a \in A$ and $s \in A-\mathfrak{p}$ so that $\varphi_{\mathfrak{p}^{\prime}}(a / s)=b / 1$, which implies that $(a-b s) s^{\prime}=0$ for some $s^{\prime} \in B-\mathfrak{p}^{\prime}$. From the assumption that B is contained in the total quotient ring of A, it follows that there is a $t \in(A: b)$ which is not a zero divisor in A and so in B. Then $(a t-b s t) s^{\prime}=0$, which shows that $\varphi_{p^{\prime}}(a t / 1)=$ $\varphi_{p^{\prime}}(b s t / 1)$. So there is an $r \in A-\mathfrak{p}$ such that ($\left.a t-b s t\right) r=0$ because $\varphi_{\mathfrak{p}^{\prime}}$ is injective by (3). From this we have $a r-b s r=0$, since t is not a zero divisor. Hence we have $s r \in A-\mathfrak{p}$ and $s r \in(A: b)$, which is a contradiction because $\mathfrak{p} \supseteq(A: b)$. Thus we have $(A: b) B=B$ for all

[^0]b of B, and (3) implies (2).
Adapting [6], an overring B of a ring A contained in the total quotient ring of A is said to be a generalized ring of quotients of A if B is A-flat.

Corollary 1. Let B be a generalized ring of quotients of A. Then for any overring C of A contained in B, B is a generalized ring of quotients of C. (Cf. Lemma 2 in [6].)

The proof is straightforward and we omit it.
Corollary 2. If a generalized ring of quotients B of A is integral over A, then $A=B$. (Cf. Proposition 2 in [6].)

The proof follows directly from Theorem 1 and the fact that if B is integral over A, then the extended ideal of a proper ideal of A to B is again proper.

Corollary 3. Let B be a generalized ring of quotients of A, and let A^{*} and B^{*} be integral closures of A and B respectively, in the total quotient ring of A. Then $B^{*}=B\left[A^{*}\right]$, and B^{*} is a generalized ring of quotients of A^{*}. In particular, if A is integrally closed in its total quotient ring, then B is also integrally closed in its total quotient ring. (Cf. Proposition 1 and Corollary in [6].)

Proof. Let b^{*} be an element of B^{*}, then $b^{* n}+b_{1} b^{*^{n-1}}+\cdots+b_{n}=0$ with $b_{i} \in B$. From Theorem 1, it follows that $\left(A: b_{i}\right) B=B$ for every i and so $\left(\cap_{i}\left(A: b_{i}\right)\right) B=B$. Then there are finite subsets $\left(a_{j}\right)$ and (c_{j}) of $\cap\left(A: b_{i}\right)$ and B respectively, such that $\sum_{i} a_{j} c_{j}=1$. Since $a_{j} b^{*}$ is in A^{*} for every j, we have $b^{*}=\sum_{j} a_{j} c_{j} b^{*} \in B\left[\dot{A}^{*}\right]$, which shows that $B^{*} \subseteq B\left[A^{*}\right]$. The converse inclusion being obvious, $B^{*}=B\left[A^{*}\right]$. Since, under the above notations, $\left(A^{*}: b^{*}\right) \supseteqq \bigcap_{i}\left(A: b_{i}\right)$, we see that B^{*} is a generalized ring of quotients of A^{*} by Theorem 1 and the definition. The last assertion is trivial.

Theorem 2. Let B be a generalized ring of quotients of A. Then:
(1) For any ideal \mathfrak{b} of B, we have $(\mathfrak{b} \cap A) B=\mathfrak{b}$. In particular, prime ideals of B are generated by prime ideals of A.
(2) Let \mathfrak{q} be a primary ideal of A belonging to a prime ideal \mathfrak{p} and such that $\mathfrak{q} B \neq B$. Then $\mathfrak{p} B \neq B, \mathfrak{p} B$ is a prime ideal, $\mathfrak{q} B$ is primary to $\mathfrak{p} B, \mathfrak{p} B \cap A=\mathfrak{p}$, and $\mathfrak{q} B \cap A=\mathfrak{q}$. (Cf. Theorem 3 in [6].)

Proof. Let b be an element of \mathfrak{b}. Since $(A: b) B=B$ by Theorem 1 , there are finite subsets $\left(a_{i}\right)$ and $\left(b_{i}\right)$ of $(A: b)$ and B respectively, such that $\sum_{i} a_{i} b_{i}=1$. Then $a_{i} b \in \mathfrak{b} \cap A$ for every i, and $b=\sum_{i} a_{i} b_{i} b$ is in $(A: b) B$, which shows that $(\mathfrak{b} \cap A) B \supseteqq \mathfrak{b}$. Since the converse inclusion is clear, we have $(\mathfrak{b} \cap A) B=\mathfrak{b}$. Thus (1) is proved. The first assertion in (2) is trivial. Next, we shall prove the other assertions
in (2). If $q \in \mathfrak{q} B \cap A$, then $q=\sum_{i} q_{i} b_{i}$ with $q_{i} \in \mathfrak{q}, b_{i} \in B$. Since $\left(A: b_{i}\right) B=$ B for each i by Theorem 1, we have $\left(\cap_{i}\left(A: b_{i}\right)\right) B=B$. From $\mathfrak{p} B \neq B$,
 is not in \mathfrak{p}. Then $a \underset{q}{i} \in \mathfrak{q}$ and, since $a \notin \mathfrak{p}$, we have $q \in \mathfrak{q}$. This shows that $\mathfrak{q} B \cap A \cong q$. On the other hand, that $\mathfrak{q} B \cap A \supseteqq \mathfrak{q}$ is clear and we have $\mathfrak{q} B \cap A=\mathfrak{q}$. As a particular case where $\mathfrak{q}=\mathfrak{p}$, we have $\mathfrak{p} B \cap A=\mathfrak{p}$. Now, let b and b^{\prime} be elements of B such that $b b^{\prime} \in \mathfrak{q} B$ and $b^{\prime} \notin \mathfrak{q} B$. Then there is an $a^{\prime} \in\left(A: b^{\prime}\right)$ such that $a^{\prime} b^{\prime} \notin \mathfrak{q}$. In fact, otherwise, we would have $b^{\prime} \in b^{\prime}\left(A: b^{\prime}\right) B \cong q B$ because $\left(A: b^{\prime}\right) B=B$, which is a contradiction. Furthermore, since $(A: b) B=B$ there are a_{1}, \cdots, a_{r} in $(A: b)$ such that $a B=B$ where $a=\left(a_{1}, \cdots, a_{r}\right) A$. Then it is obvious that for any positive integer $n, \mathfrak{a}^{n} B=B$. On the other hand, we have $a_{i} a^{\prime} b b^{\prime}=a_{i} b a^{\prime} b^{\prime} \in \mathfrak{q} B \cap A=\mathfrak{q}$ for $i=1, \cdots, r$. Since $a^{\prime} b^{\prime} \notin \mathfrak{q}$ and since \mathfrak{q} is a primary ideal, it follows that there is a positive integer n_{i} such that $\left(a_{i} b\right)^{n_{i}} \in \mathfrak{q}(i=1, \cdots, r)$. Then, taking a positive integer n to be $n \geqq \max \left\{r n_{i}\right\}$, we have $b^{n} \in b^{n} \mathfrak{a}^{n} B \subseteq q B$ as can be easily seen, which shows that $\mathfrak{q} B$ is a primary ideal. Applying this to the case where $\mathfrak{q}=\mathfrak{p}$, we see that $\mathfrak{p} B$ is a prime ideal because in that case n can be taken to be 1 . Any element of \mathfrak{p} being nilpotent modulo \mathfrak{q}, elements of $\mathfrak{p} B$ are also nilpotent modulo $\mathfrak{q} B$, whence $\mathfrak{q} B$ belongs to $\mathfrak{p} B$. Thus the proof of Theorem 2 is complete.

Corollary 1. If A is Noetherian, then any generalized ring of quotients of A is Noetherian. (Cf. Corollary of Theorem 3 in [6].)

This follows immediately from the above theorem and the wellknown theorem of Cohen (see (3.4) of Chap. 1 in [4]).

The following corollary is an immediate consequence of Theorem 2 and Lemma 2.

Corollary 2. Let B be a generalized ring of quotients of A and let $\mathfrak{q}_{1}, \cdots, \mathfrak{q}_{r}$ be primary ideals of A such that $\mathfrak{q}_{i} B \neq B$ for every i. Set $\mathfrak{a}=\mathfrak{q}_{1} \cap \cdots \cap \mathfrak{q}_{r}$. Then $\mathfrak{a} B=\mathfrak{q}_{1} B \cap \cdots \cap \mathfrak{q}_{r} B$ and $\mathfrak{a} B \cap A=\mathfrak{a}$. (Cf. Theorem 3 in [6].)
§ 2. We shall give a counter example to the conjecture of Richman (see Introduction) in the case where A is a local integral domain. In that case, condition that $(x, y) A$ is invertible implies that $(x, y) A$ is principal, say $(x, y) A=z A$. Then $(x / z, y / z) A=A$. Since A is local, one of x / z and y / z is a unit, whence $(x, y) A=x A$ or $(x, y) A=y A$. But x / y is not in A by our assumption, so we have $(x, y) A=x A$. Then y / x is in A and is invertible in B.

Therefore, for our purpose, it is enough to construct a local integral domain A and a generalized ring of quotients B of A such that $B \neq A$ and no non-unit of A is invertible in B. In the following, the notations will be as in [5].

Let C be a non-singular plane cubic curve defined over a field k_{0} and let P be a generic point of C over k_{0}, and let k be a field containing $k_{0}(P)$. Then the homogeneous coordinate ring $R_{0}=k[x, y, z]$ of C over k is normal. Let $R=k[x, y, z]_{(x, y, z)}$ and $R^{\prime}=\bigcup_{n} \mathfrak{p}^{-n}$ (\mathfrak{p}-transform of R in the sense of [5]), where \mathfrak{p} is the homogeneous prime ideal of R corresponding to P.

We shall show that $A=R$ and $B=R^{\prime}$ give the required example.*)
First, we shall prove that no non-unit of R is invertible in R^{\prime}. Suppose that there is an f of R such that f is non-unit in R and $f^{-1} \in R^{\prime}$. Then $\mathfrak{p}^{n} \cong f R$ for some n and the normality of R implies that $f R$ is primary to \mathfrak{p}. Therefore $f R=\mathfrak{p}^{(m)}$ (m-th symbolic power of \mathfrak{p}) for a suitable m. Since $\mathfrak{p}^{(m)}=\mathfrak{p}_{0}^{(m)} R\left(\mathfrak{p}_{0}=\mathfrak{p} \cap R_{0}\right)$ and since $\mathfrak{p}_{0}^{(m)}$ is homogeneous, we may assume that f is a homogeneous element of R_{0}. Then $f R_{0}=\mathfrak{p}_{0}^{(m)}$, and this shows that the intersection of the hypersurface $f=0$ with C is $m P$, which is a contradiction because P is a generic point and C is of positive genus.

Next, we shall prove that R^{\prime} is R-flat.
Lemma. Let \mathfrak{O} be an integral domain and let \mathfrak{a} be an ideal of \mathfrak{O}. Set $\mathfrak{D}^{\prime}=\underset{n}{\cup} \mathfrak{a}^{-n}$. Then there exists a one to one correspondence between prime ideals \mathfrak{q}^{\prime} of \mathfrak{D}^{\prime} and prime ideals \mathfrak{q} of \mathfrak{D} except those containing $\mathfrak{a} \mathfrak{D}^{\prime}$ and \mathfrak{a} respectively, in such a way that \mathfrak{q}^{\prime} corresponds to $\mathfrak{q}=\mathfrak{q}^{\prime} \cap \mathcal{D}$. In the case we have $\mathfrak{D}_{\mathfrak{q}^{\prime}}^{\prime}=\mathfrak{D}_{\mathfrak{q}}$. (Cf. Lemma 3 of $\S 1$ in [5].)

By the above lemma and Theorem 1, it is sufficient to prove that $\mathfrak{p} R^{\prime}=R^{\prime}$. Let $R_{0}^{\prime}=\bigcup_{n} \mathfrak{p}_{0}^{-n}$. Since P is rational over k, \mathfrak{p}_{0} can be generated by linear forms. If t is a linear form contained in \mathfrak{p}_{0}, then any element of R_{0}^{\prime} is of the form q / t^{n} with $q \in t^{n} R_{0}: \mathfrak{p}_{0}^{n}$ for a suitable n (see [5]). Assume that q is homogeneous of degree d. For a homogeneous element g of R_{0}, we denote by D_{g} the divisor of C which is cut out by the hypersurface $g=0$. Then $q \in t^{n} R_{0}: \mathfrak{p}_{0}^{n}$ if and only if $D_{q}+n P \succ n D_{t}$. Since C is a non-singular plane curve, the system of hypersurface sections of a given degree is complete. Furthermore, since the genus of C is 1 , for any divisor D of degree greater than 1 , the complete system $|D|$ has no fixed points. Then it follows that, taking n and d so that $3 d-2 n>2$ and $n>d$, we can find two homogeneous forms q_{1} and q_{2} of degree d in $t^{n} R_{0}: \mathfrak{p}_{0}^{n}$ such that $D_{q_{1}}-n D_{t}$ and $D_{q_{2}}-n D_{t}$ have no common points except P. Taking two linear forms h_{1} and h_{2} belonging to \mathfrak{p}_{0} so that $D_{q_{1} h_{1}}-n D_{t}$ and $D_{q_{2} h_{2}}-n D_{t}$ have no common points except P, we set $a_{1}=q_{1} h_{1}^{n-a} / t^{n}$ and $a_{2}=q_{2} h_{2}^{n-a} / t^{n}$.

On the other hand, $C-\{P\}$ is an affine curve and so we denote its affine ring by R^{*}. Then a_{1} and a_{2} are contained in R^{*} and

[^1]$a_{1} R^{*}+a_{2} R^{*}=R^{*}$ because a_{1} and a_{2} have no common zeros. Obviously, $R^{\prime} \supseteq R^{*}$ and, since $q_{i} / t^{n} \in R^{\prime}$ and $h_{i} \in \mathfrak{p}$, we have $a_{i} \in \mathfrak{p} R^{\prime}(i=1,2)$. Then the relation $a_{1} R^{*}+a_{2} R^{*}=R^{*}$ implies that $\mathfrak{p} R^{\prime}=R^{\prime}$, as we wanted.

References

[1] N. Bourbaki: Algèbre Commutative. Hermann, Paris (1961).
[2] L. Budach: Über eine Charakterisierung der Grellschen Schemata. Math. Nachr., 27, 5-6 (1964).
[3] M. D. Lazard: Sur les modules plats. C. R. Acad. Sci. Paris, 258 (1964).
[4] M. Nagata: Local Rings. Interscience, New York (1962).
[5] -: A treatise on 14th problem of Hilbert. Mem. Coll. Sci.U niv. Kyoto, 30 (1) (1956); Corrections, ibid, 30 (3) (1957).
[6] F. Richman: Generalized quotient rings, forthcoming.
[7] R. Walker: Algebraic Curves. Princeton University Press (1950).

[^0]: *) This part of the proof is the same as that of [6].

[^1]: *) This example was obtained following a suggestion made by Prof. Nagata

