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Introduction. Let A be an integral domain and let B be an over-
ring of A contained in the quotient field of A. Then B is called a
generalized ring of quotients of A if B is flat as an A-module. It
has been shown that generalized rings of quotients have similar
properties to those of ordinary rings of quotients (see 2 and 6).
In 1 of this paper, we first generalize the results to the case where
A is not necessarily an integral domain. Some of the proofs are
adaptions of those of 6], but, in order to make this paper self-con-
tained, we repeat them again. In 2, we give a counter example to
the following conjecture of Richman in 6].

Le A be an integral domain and let B be a gene’alized ring

of quotients of A no equal o A. Then here exists an /y in B
which is not in A, such that (, y)A is invertible.

The author wish to express his heartful thanks to Prof. M. Nagat
for kind advices and for valuable suggestions.

1. First of all, we list some well-known properties of flatness
as lemmas without proofs (cf. 1, 3, 4). Rings will mean always
commutative rings with units.

Lemma 1. Let R and R’ be rings such ha R’ is an R-module.
Then R’ is R-fiat if and only if he following condition is satisfied:

If (y) and (c) are finite subes of R’ and R respectively, such
that c,y,=0, then there eist a finite subset () of R’ and a finite
subset (b,a,) of R for which we have b,c,=O for each j, and y,--

b,x for each i.
Lemma 2. Let R and R’ be as above and assume tha R’ is R-

Let A be a ring. In this section, we shall denote by B an over-
ring of A contained in the total quotient ring of A.

Theorem 1. The following three conditions are equivalent to
each other:

(1) B is A-fiat.
2 For any element b of B, we have (A: b)B=B, where (A: b)

denotes the set of elements a of A such that ab e A. (It is evident
that (A:b) is an ideal of A.)
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3 For every prime ideal p’ of B, the canonical homomorphism
,qo, from Ao,, in Bo, is bijective. (Cf. Theorems 1 and 2 in 6.)

Proof. Equivalence between (1) and (2): Assume that B is A-
flat. Let b=x/y (x, y A; y is not a zero divisor) be an element of
B. Then y(x/y)-x.l=O. By Lemma 1, there exist a finite subset
(b.) of B and a finite subset (a, a)of A such that (1’)ay-a.x=O
for each j, (2’) x/y= ab, and (3’) 1= a.b. From (1’), it follows
that a.. is in (A’b) for every 3", and (3’) asserts that (A’b)B-B.
Thus (1) implies (2). *) Assume, conversely, that (2) is valid. Let
(y) and (c)be finite subsets of B and A respectively, such that
yc=O. Since (A: y)B--B for each i by the condition (2), we have

(g (A" y))B. (A" y)B-B, and (. (A" y))B=B. So there are
finite subsets (a.) and (x.) of (A: y) and B respectively, for which

we have ax=l. Then b-ya is in A for each i and 3", Y-
yax= bx for every i, and 0=cya= cb for each 3".

.By Lemma 1, this shows that B is A-flat. Hence (2) implies (1).
Equivalence between (2) and (3): assume that (2) is true. Let

p’ be an arbitrary prime ideal of B and set O=O’A. If po,(a/s)=O
for an a/s of Ao(ae A, s e A-p), then we have as’=O with an s’ in
B-O’. By the condition (2), (A: s’)B---B and then (A: s’)iiP. Hence
there is an element t in (A:s’) such that te p. Then as’t=O with
s’te A-p, which shows that a/s-O in A, whence po, is injective.
Next, let b/s’ be an arbitrary element of Bo,(b e B, s’e B-O’). Since
(A: b)B=B and (A: s’)B=B, we have ((A: b) (A: s’))B=B and so
(A: b)(A: s’)p. Then there is an element s in (A:b)(A: s’)
which is not in p. For the s, we have ss’ e A-O and bs e A, so bs/ss’
may be considered as an element of Ao. It is obvious that cpo,(bs/ss’)=
b/s’, which shows that , is surjective. Thus (2)implies (3). Con-
versely, assume that (3) is satisfied, and suppose that there is a b e B
such that (A:b)B=/=B. Then there is a prime ideal p’ of B contain-
ing (A: b)B, and so we have O(A: b) for O=O’A. Since p, is
surjective by the condition (3), we can take a e A and s e A-O so
that p,(a/s)=b/1, which implies that (a-bs)s’=O for some s’
From the assumption that B is contained in the total quotient ring
of A, it follows that there is a t e (A:b) which is not a zero divisor
in A and so in B. Then (at-bst)s’=O, which shows that po,(at/1)=
pv,(bst/1). So there is an re A-O such that (at-bst)r=O because
(p}, is injective by (3). From this we have ar-bsr-O, since t is not
a zero divisor. Hence we have sr e A-O and sr e (A b), which is a
contradiction because p(A:b). Thus we have (A:b)B--B for all

*) This part of the proof is the same as that of [6.
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b of B, and (3) implies (2).
Adapting [6, an overring B of a ring A contained in the total

quotient ring of A is said to be a generalized ring of quotients of
A if B is A-flat.

Corollary 1. Let B be a generalized ring of quotients of A.
Then for any overring C of A contained in B, B is a generalized
ring of quotients of C. (Cf. Lemma 2 in [6.)

The proof is straightforward and we omit it.
Corollary 2. If a generalized ring of quotients B of A is

integral over A, then A-B. (Cf. Proposition 2 in [6_.)
The proof follows directly from Theorem 1 and the fact that if

B is integral over A, then the extended ideal of a proper ideal of A
to B is again proper.

Corollary 3. Let B be a generalized ring of quotients of A,
and let A* and B* be integral closures of A and B respectively, in
the total quotient ring of A. Then B*-B[A*, and B* is a gener-
alized ring of quotients of A*. In particular, if A is integrally
closed in its total quotient ring, then B is also integrally closed
in its total quotient ring. (Cf. Proposition 1 and Corollary in [6.)

Proof. Let b* be an element of B*, then b*’+bb*-/ /b-O
with b e B. From Theorem 1, it follows that (A’b)B=B for every

i and so ( (A’b))B-B. Then there are finite subsets (a) and
/

(c) of (A’b) and B respectively, such that ac-l. Since ab*
is in A* for every , we have b*- acb* e B[A*, which shows that

B*B[A*. The converse inclusion being obvious, B*-B[A*. Since,
under the above notations, (A*’b*) (A’b), we see that B* is a

generalized ring of quotients of A* by Theorem. 1 and the definition.
The last assertion is trivial.

Theorem 2. Let B be a generalized ring of quotients of A.
Then:

( 1 For any ideal 5 of B, we have (5 ( A)B-5. In particular,
prime ideals of B are generated by prime ideals of A.

2 Let q be a primary ideal o] A belonging to a prime ideal
p and such that qBcB. Then OBcB, OB is a prime ideal, qB is
primary to OB, OB A=O, and qB V) A- q. (Cf. Theorem 3 in [6.)

Proof. Let b be an element of b. Since (A" b)B-B by Theorem
1, there are finite subsets (a) and (b) of (A’b) and B respectively,
such that ab-l. Then abe 5A for every i, and b- abb is

in (A’b)B, which shows that (5A)B5. Since the converse in-
clusion is clear, we have (5V)A)B-5. Thus (1) is proved. The first
assertion in (2) is trivial. Next, we shall prove the other assertions
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in (2). If q e qB A, then q- qb with q e q, b e B. Since (A" b)B---
B for eaeh i by heorem 1, we have (A" b) B-B. From pB=/=B,
it follows that pN fl (A’b), henee there is an in (A’b)whieh
is not in p. Then q e q and, sinee a p, we have q q. This shows
that qB Aq. On the other hand, that qBAq is clear and we
have qB A=q. As a particular case where q=p, we have pB A=p.
:Now, let b and b’ be elements of B such that bb’e qB and b’e qB.
Then there is an a’e (A’b’) such that a’b’e q. In fact, otherwise,
we would have b’e b’(A’b’)BqB because (A’b’)B-B, which is a
contradiction. Furthermore, since (A" b)B-B there are a, ..., a, in
(A’b) such that aB-B where a-(a, ..., a,)A. Then it is obvious
that for any positive integer n, a’B-B. On the other hand, we
have aa’bb’- aba’b’ e qB ) A- q for i- 1, ..., r. Since a"b’ q and
since q is a primary ideal, it follows that there is a positive integer

such that (ab)’e q(i-1, ..., r). Then, taking a positive integer
n to be n>=max{rn}, we have b’e b’a’BqB as can be easily seen,
which shows that qB is a primary ideal. Applying this to the case
where q-p, we see that pB is a prime ideal because in that case n
can be taken to be 1. Any element of p being nilpotent modulo q,
elements of pB are also nilpotent modulo qB, whence qB belongs to
pB. Thus the proof of Theorem 2 is complete.

Corollary 1. If A is Noetherian, then any generalized ing of
quotients of A is Noetherian. (Cf. Corollary of Theorem 3 in [6.)

This follows immediately from the above theorem and the well-
known theorem of Cohen (see (3.4) of Chap. 1 in [4).

The following corollary is an immediate consequence of Theorem
2 and Lemma 2.

Corollary 2. Let B be a generalized ring of quotients of A and
let %..., q be primary ideals of A such that qBcB for every i.
Set a-q q. Then B-qB qB and B A--. (Cf.
Theorem 3 in 6.)

2. We shall give a counter example to the conjecture of Rich-
man (see Introduction) in the case where A is a local integral domain.
In that case, condition that (x, y)A is invertible implies that (x, y)A
is principal, say (x, y)A-zA. Then (x/z, y/z)A= A. Since A is local,
one of x/z and y/z is a unit, whence (x, y)A-xA or (x, y)A-yA.
But x/y is not in A by our assumption, so we have (x, y)A--xA.
Then y/x is in A and is invertible in B.

Therefore, for our purpose, it is enough to construct a local
integral domain A and a generalized ring of quotients B of A such
that B#:A ,and no non-unit of A is invertible in B. In the following,
the notations will be as in 5.
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Let C be a non-singular plane cubic curve defined over a field k0
and let P be a generic point of C over k0, and let k be a field con-
taining ko(P). Then the homogeneous coordinate ring Ro=k, y, z
of C over k is normal. Let R-k, y, z,, and R’- p- (p-trans-
form of R in the sense of 5), where p is the homogeneous prime
ideal of R corresponding to P.

We shall show that A-R and B-R’ give the required example.*
First, we shall prove that no non-unit of R is invertible in R’.

Suppose that there is an f of R such that f is non-unit in R and
f-e R’. Then pfR for some n and the normality of R implies
that fR is primary to p. Therefore fR=p (m-th Symbolic power
of p) for a suitable m. Since pt)=p(oR (p0=PR0)and since p0( is
homogeneous, we may assume that f is a homogeneous element of
R0. Then fRo-P(o, and this shows that the intersection of the
hypersurface f=0 with C is raP, which is a contradiction because P
is a generic point and C is of positive genus.

Next, we shall prove that R’ is R-flat.
Lemma. Let ) be an integral domain and let a be an ideal of

). Set )’= @ a-. Then there exists a one to one correspondence

between prime ideals q’ of (C)’ and prime ideals q of )except those
containing ’ and respectively, in such a way that q’ corresponds
to q-q’ ). In the case we have )’,-). (Cf. Lemma 3 of 1 in 5.)

By the above lemma and Theorem 1, it is sufficient to prove that
pR’-R’. Let R0- (2 0-". Since P is rational over k, P0 can be gener-

ated by linear forms. If t is a linear form contained in P0, then any
element of R is of the form q/t with qe t’Ro’P for a suitable n
(see [5_). Assume that q is homogeneous of degree d. For a homo-
geneous element g of R0, we denote by D the divisor of C which is
cut out by the hypersurface g-0. Then qe tRo’P if and only if
Dq/nP>-nD. Since C is a non-singular plane curve, the system of
hypersurface sections of a given degree is complete. Furthermore,
since the genus of C is 1, for any divisor D of degree greater than
1, the complete system D[ has no fixed points. Then it follows
that, taking n and d so that 3d-2n:>2 and n>d, we can find two
homogeneous forms q and q of degree d in tRo "p such that
Dq-nD and Dq-nD have no common points except P. Taking
two linear forms h and h. belonging to 0 so that Dq-nD and
Dq-nD have no common points except P, we set a-qh-/t" and

n--a=q.h It.
On the other hand, C-{P} is an affine curve and so we denote

its affine ring by R*. Then a and a are contained in R* and
*) This example was obtained following a suggestion made by Prof. Nagata
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aR*+aR*-R* because a and a have no common zeros. Obviously,
R’R* and, since q/t e R’ and h e p, we have a e OR’ (i-1, 2).
Then the relation aR*+a.R*-R* implies that OR’-R’, as we wanted.

E6]
E7]
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