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(Comm. by Kinjir6 KUNU(I, M.J.A., Jan. 12, 1965)

3. The Equational Basis B. To show the equational com-
pleteness of system B, it will suffice to derive N( from it, because
the +’-transforms of the equations of B and N( yield precisely
Wooyenaka’s axiom system II (see [7 and [8)"

N;
/ \_

N+. N+.
\ /
N?

This implies then that B+" is an equational basis for Newman algebras
and the superfluousness of N" in Wooyenaka’s system II.

3.1. xx-x.

3.2. x-.
x-x+=(x+)- (N, N;, N;).

3.3. x+g-y+.
x+g-(x,-Fg)(y-+-)-y/ (N., N:).

3.4. +g-g+.
(a) (+)-g+x-+-+=(+)= (N’, 3.2, 3.1,

N;,N;).
(b) (+x)-+x-= (N’, N., 3.1).

Then x+- +-(+x)+(+x)=(+x)(+)- + x (3.3, (a)-(b),

-x-x+x-x(+)-x(’y,+)-x (3.2,/., N, 3.4, N).
(Y)(Y)--Y.

(Y)(Y)-- (Y)(Y)-+-y=(Y)(Y)+ (y)-- (y)(Y+Y)
(y)(y+y)--y (, 3.1,, N1, 8.4, N).

y--y+.
yy= (yy+ yy)(y)-- (y)(yy)+ (yy)--y+yy=y+y (N;
3.6-3.1, 3.3).
Xg-y (3.5, 3.7, 3.3, 3.7, 3.5).
x(y)-y.
x(y)- x(x)- x(x)+x-x(x+)-x(x+)

=x((x+g)g)-xg= yy (3.8, N, N, 8.1, N’, N’, 3.8)
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3.10.
y+ x-- x(y)+ x(y+)-- x(yt+ (y+ t))-- x(y+y)-- x (3.9-N.,
N, 3.7, N.).

BN. The indpendence of N in B is shown by the model P of
Y. Wooyenaka 8 page 86.

BN/. The independence-model of N/ in B is obtained from the
preceding model by Wooyenaka by transposing its +-table and --table.

BN. The following model proves the independence of N. from
the rest of B:

+ 0 1

Observe here that 1(0+0):/:1.

0 y

TTT TT
TTT TT

BN/. The model for independence of N/in B is obtained from
BN by transposing its .-table.

BN. The following is a model for N.’s independence from the
rest of B:

+ 0 1 0 1 y

TTT TTT TT
TTT TTT TT

Here note that 0+ 11 =/=0.

4. The Equational Basis C. To show the adequacy of C as
a formulation of Newman algebras, we shall derive 2+ and N (and
hence A) from it.

4.1. x+y=x.
x- x(x+)- xx+x- x+y (N, N, N-Ns).

4.2. x+-y+ (N, N,
4.3. x-.
=(x+)-x+-x+g=x (N., N, N, 4.1).

4.4. +x:x+.
From the identities (a) =(+)=-Z+-Z+-Z+x-(Z+x)=
(+x) (N, N, N, 4.8, N, N) and (b)
(+ x)’(4.1, N-N, N, N), we obtain x+- +- (’y, + x)+(+x)=
(Z+ x)(+)-

4.5. -x.
xx xx+x= x-2+ x’Y, = x(+’)-- x(+)-- x (4.3, 4.1, N,

N, 4.4, N).
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4.6. y+x--x.
y+x--x+xx--x(2+x)--x(x+)--x (Ns-N, N, 4.4, N).

CN. Independence-Model of N in C.

+ 0

0 0

1

1

1

1

1

1 a b

0 0 0

1 a b

a a 0

b 0 b

Note, a(b+ b)ab+ ab.
CN. is the same as AN:.
CN is the same as AN.
CN. Independence-Model of N in C.

+ 0 1 a 0 1 a

0 a 1 0 0 a 0 1

1 1 0 a t 0 1 a

a 0 a 1 a 1 a 0

Here we have aa ve a, O0 O.
CNs. Independence-Model of Ns in C.

+ 0 1 0 1

TTT TTT
TTT TTT

y y

0 1

1 0

a a

Observe that 00 =/= 11.
5. The Equational Basis D. This time, we shall derive N

and Na (and hence C) from D.
5.1. x(y+)--x.

x(y+)--x(x+5)--xx+x--xx--x (Ns, N, N,
The following propositions are derived in exactly the same way

as in section 4 (propositions 4.3, 4.4, 4.5):
5.2. x--.
5.3. ’+ x-- x +’.
5.4. --x.
5.5. yy--y+

5.6. x-yy (5.4, 5.5, N, 5.5, 5.4).
DN is the same as that of CN,
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DN, the independence-model of N in D, is the following"

+ o 1 o 1 y

0 O" 1 TTT TT
1 o TTT TT

Note here that 0+y=/: 0.
DN is the same as AN and CN.
DN. The independence-model of N in D is given by

/ o 1 o 1 y

o o T-T-T -o-T
T TTT TT

In this case, 11=/= 1.
DN8 in the following:

+ 0 1 0 1 y

o 0 o TTT TT
o TTT TT

Note, 0+ 0=/=1+ 1.
6. The Equational Basis E. It is sufficient to derive N, and

hence B, in order to show its equational completeness.
6.1. x’-y.

xS- x’+ y=yp N, N+).
6.2. C-;=x.

x+,-(x+)(x+)=x (N;, 6.1).
6.3. +5-y+p.

o+,=+-x-yp=y+=y+ (N, 6.2, 6.1, 6.2, No).
6.4. =.

-=(+’)=+=x-x (N, N;, N;, N.,
6.5. z(y+)=.

x(y/p)---x(z /’)=zc/z’-x- (6.3, N, N, 6.4).
EN and EN; are respectively the same models BN and BN;

(by Y. Wooyenaka).
EN is the same as AN.
EN is the following:

+ o 1

o o 1

1 o 1

o 1

TTT
TTT

TT
TT
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+ 0 1

Here we have 0 :/: O.

In this case, 0 + 00 =/= 0.
EN( is the same as BN.. In this case, note that 00+0#=0.
EN is given by the following"

o 1 y

TTT o

TTT 0

7. Concluding Remarks. As we have previously observed 6,
every postulate-system for Newman algebras gives rise to a postulate-
system for Boolean algebras when any one of the following equations
is added as an additional postulate: +-, +yz=(+y)(x+ z),
+y=, (+y)=x, x+(y+)=y+, (+y)+y-. In the cases

of A, B, D or E together with x+x-x, it is easy to see that we
obtain, in fact, equational bases f,or Boolean algebras. Similarly, if
the equation ()y=(y) were added to any postulate system for
Newman algebras, then a postulate-system for Boolean rings with
identity is obtained.
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