2. A Note on General Connections

By Tominosuke ŌTSUKI
Department of Mathematics, Tokyo Institute of Technology, Tokyo (Comm. by Zyoiti Suetuna, m.J.A., Jan. 12, 1965)

Let M be an n-dimensional differentiable manifold and γ be a general connection on M. In terms of local coordinates u^{i} of M, γ can be written as:
(1) $\quad \gamma=\partial u_{j} \otimes\left(P_{i}^{j} d^{2} u^{i}+\Gamma_{i h}^{j} d u^{i} \otimes d u^{h}\right),{ }^{11}$
where $\partial u_{j}=\partial / \partial u^{j}$ and $d^{2} u^{i}$ is the differential of order 2 of u^{i}. As easily shown, P_{i}^{j} are the components of a tensor field of type (1,1), which we denote by

$$
\begin{equation*}
P=\partial u_{j} \otimes P_{i}^{j} d u^{i}=\lambda(\gamma) . \tag{2}
\end{equation*}
$$

For any tensor field Q of type $(1,1)$ with local components Q_{i}^{j} and a general connection γ, we can define two general connections as

$$
\begin{equation*}
Q \gamma=\partial u_{k} Q_{j}^{k} \otimes\left(P_{i}^{i} d^{2} u^{i}+\Gamma_{i h}^{j} d u^{i} \otimes d u^{h}\right)^{2)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma Q=\partial u_{j} \otimes\left(P_{k}^{j} d\left(Q_{i}^{k} d u^{i}\right)+\Gamma_{k h}^{j}\left(Q_{i}^{k} d u^{i}\right) \otimes d u^{h}\right) . \tag{4}
\end{equation*}
$$

On these multiplications of general connections and tensor fields of type (1,1), we have

Lemma 1. The products of general connections and tensor fields of type $(1,1)$ defined by (3) and (4) satisfy the associative law with respect to the multiplications from the left and the right. ${ }^{3)}$

When $\lambda(\gamma)=1, \gamma$ is an affine connection on M and when $\lambda(\gamma)=0, \gamma$ is a tensor field of type (1,2). In this note, we investigate the condition that for a given general connection γ on M there exist affine connections γ_{1} such that $\gamma=P \gamma_{1}$ or $\gamma=\gamma_{1} P$, where $P=\lambda(\gamma)$. The following theorem is evident.

Theorem A. Let γ be a general connection on M and put $P=$ $\lambda(\gamma)$. In order to exist an affine connection γ_{1} such that

$$
\begin{equation*}
\gamma=P \gamma_{1} \quad\left(\text { or } \gamma=\gamma_{1} P\right) \tag{5}
\end{equation*}
$$

it is necessary and sufficient that for an affine connection γ^{*} on M, the tensor $T=\gamma-P \gamma^{*}\left(\right.$ or $\left.\gamma-\gamma^{*} P\right)$ is of the form $T_{i h}^{j}=P_{l}^{j} V_{i h}^{l}$ (or $V_{i h}^{j} P_{i}^{l}$), where $T_{i h}^{j}$ and $V_{i h}^{j}$ are the local components of T and a tensor of type (1, 2).

Lemma 2. Let V be an n-dimensional vector space over the real field R and $P: V \rightarrow V$ be a linear transformation whose minimal polynomial is

1) See [3]
2) See [7]
3) See Proposition 1.1 in [7]
(6)

$$
F(\xi)=\xi^{l}+a_{1} \xi^{l-1}+\cdots+a_{l-r} \xi^{r}, a_{l-r} \neq 0 .
$$

Then we have:
(i) When and only when $r=0, P$ is regular, i.e. an isomorphism.
(ii) When $r>0, P^{t}$ is normal if and only if $t \geqq r$, that is

$$
V=\text { image of } P^{t} \oplus \text { kernel of } P^{t} \text {. }
$$

(iii) Furthermore, if $l>r$, putting

$$
\begin{equation*}
g(\xi)=-\frac{1}{a_{l-r}} \sum_{\alpha=0}^{l-r-1} a_{\alpha} \xi^{l-r-1-\alpha} \quad\left(a_{0}=1\right), \tag{7}
\end{equation*}
$$

P and $g(P)$ are the inverse of each other on $P^{r}(V)$.
Proof. (i) is evident from the fact the eignvalues of P is roots of the equation $f(\xi)=0$. In the case, we have

$$
P \cdot g(P)=1 .
$$

On (iii), the identity:

$$
f(P)=P^{l}+a_{1} P^{l-1}+\cdots+a_{l-r} P^{r}=0
$$

can be written as
(8)

$$
P \cdot g(P) \cdot P^{r}=P^{r} .
$$

Since we have

$$
P\left(P^{r}(V)\right) \subset P^{r}(V) \text { and } g(P)\left(P^{r}(V)\right) \subset P^{r}(V),
$$

(8) shows that P and $g(P)$ are the inverse of each other on $P^{r}(V)$. Accordingly we have

$$
\begin{equation*}
P^{r}(V)=P^{r+1}(V)=\cdots \tag{9}
\end{equation*}
$$

and $P^{r-1}(V) \supsetneqq P^{r}(V)$, for otherwise $P \mid P^{r-1}(V)$ is an isomorphism on $P^{r-1}(V)$, and so its minimal polynomial has a non-zero constant term by (i) and the polynomial $\times \xi^{r-1}$ is divisible by $f(\xi)$. Hence we have

$$
\begin{equation*}
V \supsetneqq P(V) \supsetneqq \cdots \not P^{r-1}(V) \supsetneqq P^{r}(V)=P^{r+1}(V)=\cdots \tag{10}
\end{equation*}
$$

Regarding (ii), in general, a linear transformation $Q: V \rightarrow V$ is normal if and only if Q is isomorphic on $Q(V)$. In the both cases $l>r$ and $l=r,(10)$ holds good. Hence for an integer t, P^{t} is normal if and only if $t \geqq r$.
q.e.d.

Theorem B. Let γ be a general connection on M such that: the minimal polynomial of $P=\lambda(\gamma)$ is given by

$$
\begin{equation*}
f(\xi)=\xi^{l}+a_{1} \xi^{l-1}+\cdots+a_{l-r} \xi^{r}, \tag{11}
\end{equation*}
$$

where a_{1}, \cdots, a_{l-r} are differentiable and everywhere $a_{l-r} \neq 0$, and the dimension of the image of P is constant.

In order to exist an affine connection γ_{1} such that

$$
\begin{equation*}
\gamma=P \gamma_{1} \quad\left(\text { or } \quad \gamma=\gamma_{1} P\right), \tag{5}
\end{equation*}
$$

it is necessary that (i) $r=0$ or (ii) $r>0$ and

$$
\begin{equation*}
\left(P^{l-1}+a_{1} P^{l-2}+\cdots+a_{l-r} P^{r-1}\right) \gamma=0 \tag{12}
\end{equation*}
$$

$$
\left.\gamma\left(P^{l-1}+a_{1} P^{l-2}+\cdots+a_{l-r} P^{l-1}\right)=0\right) .
$$

When $r=1$, (12) (or (13)) is sufficient.
Proof. When $r=0, P$ is regular and the connection $\gamma_{1}=P^{-1} \gamma$ is
the solution of (5) by Lemma 1.
When $r>0$, clearly (12) is a necessary condition that (5) has solutions.

In the case $r=1$, if $l=r$, then $P=0$ and so (5) become trivial. Let assume $l>r=1$. Putting

$$
\begin{equation*}
g(\xi)=-\frac{1}{a_{l-1}} \sum_{\alpha=0}^{l-2} a_{\alpha} \xi^{l-2-\alpha} \quad\left(a_{0}=1\right) \tag{14}
\end{equation*}
$$

then the identity $f(P)=0$ can be written as

$$
\begin{equation*}
P \cdot g(P) \cdot P=P \tag{15}
\end{equation*}
$$

By Lemma 2, P is normal. Let M_{x} be the tangent space to M at $x \in M, P_{x}$ and N_{x} be the image and the kernel of P on M_{x} respectively. Then we have the direct sum:

$$
M_{x}=P_{x} \oplus N_{x}
$$

by which we define two normal tensor fields A and N such that A: $M_{x} \rightarrow P_{x}$ and $N: M_{x} \rightarrow N_{x}$ are projections. We have easily

$$
A+N=1, A N=N A=0, A^{2}=A \text { and } N^{2}=N
$$

Now, we define a general connection $\bar{\gamma}$ by

$$
\bar{\gamma}=g(P) \gamma
$$

then we have by (12) the relation:

$$
\begin{gathered}
P \bar{\gamma}=P g(P) \gamma=\gamma \\
\lambda(\bar{\gamma})=g(P) P \quad \text { and } \quad g(P) P\left|P_{x}=1\right| P_{x} .
\end{gathered}
$$

Let Q be the tensor field defined by

$$
Q\left|P_{x}=g(P)\right| P_{x}, Q\left(N_{x}\right)=0
$$

then we have clearly

$$
Q P=P Q=A, A P=P A=P, \quad N P=P N=0
$$

and

$$
\lambda(A \bar{\gamma})=A g(P) P=Q(P g(P) P)=Q P=A
$$

Now, taking a suitable affine connection $\bar{\gamma}_{1}$ on M, we define a general connection γ^{*} by

$$
\gamma^{*}=A \bar{\gamma}+N \bar{\gamma}_{1}
$$

Then, we have

$$
\lambda\left(\gamma^{*}\right)=\lambda(A \bar{\gamma})+\lambda\left(N \bar{\gamma}_{1}\right)=A+N=1,
$$

hence γ^{*} is an affine connection. Furthermore

$$
P \gamma^{*}=P A \bar{\gamma}+P N \bar{\gamma}_{1}=P A \bar{\gamma}=P \bar{\gamma}=\gamma
$$

γ^{*} is a solution of (5). Analogously, we can prove this for the equation $\gamma=\gamma_{1} P$.
q.e.d.

Theorem C. Let γ be a general connection on M such that: The minimal polynomial of $P=\lambda(\gamma)$ is given by

$$
\begin{equation*}
f(\xi)=\xi^{l}+a_{1} \xi^{l-1}+\cdots+a_{l-r} \xi^{r} \tag{11}
\end{equation*}
$$

where $l>r>1, a_{1}, \cdots, a_{l-r}$ are differentiable and everywhere $a_{l-r} \neq 0$ and the dimension of the image of P^{r} is constant. Let A and N be the tensor fields of type $(1,1)$ defined by means of the direct sum
decomposition: $M_{x}=\left(P^{r}\right)_{x} \oplus N_{x}, x \in M$, where $\left(P^{r}\right)_{x}$ and N_{x} are the image and the kernel of P^{r} on M_{x} respectively. Assuming that γ satisfies (12) and putting

$$
\begin{equation*}
g(\xi)=-\frac{1}{a_{l-r}} \sum_{\alpha=0}^{l-r-1} a_{\alpha} \xi^{l-r-1-\alpha} \quad\left(a_{0}=1\right) \tag{16}
\end{equation*}
$$

define a general connection $\tilde{\gamma}$ by

$$
\tilde{\gamma}=\gamma-P(A g(P) \gamma),
$$

then the following hold:
(i) $P^{r-1} \tilde{\gamma}=0$.
(ii) $\lambda(A g(P) \gamma)=A$ and $\lambda(\widetilde{\gamma})=\widetilde{P}=P N$.
(iii) The minimal polynomial of \widetilde{P} is ξ^{r}.
(iv) The existence of an affine connection γ_{1} such that $\gamma=P \gamma_{1}$ is equivalent to the one of an affine connection $\tilde{\gamma}_{1}$ such that $\tilde{\gamma}=\widetilde{P} \tilde{\gamma}_{1}$.

Proof. The identity

$$
f(P)=P^{l}+a_{1} P^{l-1}+\cdots+a_{l-r} P^{r}=0
$$

can be written as

$$
P \cdot g(P) \cdot P^{r}=P^{r}
$$

From (12), we get

$$
\begin{equation*}
P^{r-1}(\gamma-P(g(P) \gamma))=0 . \tag{17}
\end{equation*}
$$

Since we have

$$
\lambda(g(P) \gamma)=g(P) \lambda(\gamma)=g(P) P
$$

for any $x \in M$ we have

$$
\lambda(g(P) \gamma)\left|\left(P^{r}\right)_{x}=A\right|\left(P^{r}\right)_{x}
$$

Now we define a tensor field Q of type $(1,1)$ on M by

$$
Q\left|\left(P^{r}\right)_{x}=(g(P))^{r}\right|\left(P^{r}\right)_{x} \text { and } Q\left(N_{x}\right)=0,
$$

then we have

$$
Q P^{r}=P^{r} Q=A, A P^{r}=P^{r} A=P^{r} ; N P^{r}=P^{r} N=0
$$

Hence, by virtue of Lemma 1, (17) can be written as

$$
P^{r-1}(\gamma-P(A g(P) \gamma))=0, \text { that is } P^{r-1} \tilde{\gamma}=0
$$

Regarding (ii), we have easily

$$
\begin{gathered}
\lambda(A(g(P) \gamma))=A g(P) P=Q\left(P^{r} g(P) P\right)=Q P^{r}=A, \\
\lambda(\widetilde{\gamma})=\lambda(\gamma-P(A g(P) \gamma))=P-P A=P N=\widetilde{P} .
\end{gathered}
$$

Nextly, since N_{x} is the kernel of P^{r} on $M_{x}, x \in M$, we have $P\left(N_{x}\right) \subset N_{x}$, that is $P N\left(M_{x}\right) \subset N\left(M_{x}\right)$,
from which we get easily

$$
(P N)^{k}\left(M_{x}\right)=P^{k} N\left(M_{x}\right), k=2,3, \cdots
$$

and especially

$$
(P N)^{r}\left(M_{x}\right)=0 .
$$

If we have $(P N)^{k}=0$ for $k<r$, then from the above we get
$N_{x} \subset$ kernel of P^{k} on $M_{x} \subset$ kernel of P^{r} on M_{x}, accordingly

$$
\text { kernel of } P^{k} \text { on } M_{x}=\text { kernel of } P^{r} \text { on } M_{x},
$$

from which

$$
\text { image of } P^{k}=\text { image of } P^{r} .
$$

This contradicts to Lemma 2. Hence, the minimal polynomial of \widetilde{P} is ξ^{r}.

Lastly, assuming that there exists an affine connection γ_{1} such that $\gamma=P \gamma_{1}$, we have

$$
\begin{aligned}
\tilde{\gamma} & =\gamma-P(A g(P) \gamma)=(P-P A g(P) P) \gamma_{1}=P(1-A g(P) P) \gamma_{1}= \\
& =P(1-A) \gamma_{1}=P N \gamma_{1}=\widetilde{P} \gamma_{1} .
\end{aligned}
$$

Conversely, assuming that there exists an affine connection $\tilde{\gamma}_{1}$ such that $\tilde{\gamma}=P N \tilde{\gamma}_{1}$, we have

$$
\gamma=\tilde{\gamma}+P(A g(P) \gamma)=P\left(A g(P) \gamma+N \tilde{\gamma}_{1}\right)
$$

and

$$
\lambda\left(A g(P) \gamma+N \tilde{\gamma}_{1}\right)=A+N=1 .
$$

Hence $\gamma_{1}=A g(P) \gamma+N \tilde{\gamma}_{1}$ is an affine connection. q.e.d.

References

[1] T. Otsuki.: On tangent bundle of order 2 and affine connections. Proc. Japan Acad., 34, 325-330 (1958).
[2] -: Tangent bundles of order 2 and general connections. Math. J. Okayama Univ., 8, 143-179 (1958).
[3] -: On general connections, I. Math. J. Okayama Univ., 9, 99-164 (1960).
[4] -: On general connections, II. Math, J. Okayama Univ., 10, 113-124 (1961).
[5] -: On metric general connections. Proc. Japan Acad., 37, 183-188 (1961).
[6] -: On normal general connections. Kōdai Math. Sem. Rep., 13, 152-166 (1961).
[7] -: General connections $A \Gamma A$ and the parallelism of Levi-Civita. Kōdai Math. Sem. Rep., 14, 40-52 (1962).
[8] -: On basic curves in spaces with normal general connections. Ködai Math. Sem. Rep., 14, 110-118 (1962).
[9] -: A note on metric general connections. Proc. Japan Acad., 38, 409-413 (1962).
[10] -: On curvatures of spaces with normal general connections, I. Kōdai Math. Sem. Rep., 15, 52-61 (1963).
[11] -: On curvatures of spaces with normal general connections, II. Kōdai Math. Sem. Rep., 15, 184-194 (1963).

